Answer
Verified
497.4k+ views
Hint: Look into the table of derivatives of trigonometric functions for cosec x and cot x. Convert the root into power and then differentiate it.
Complete step-by-step answer:
Given Data,
y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$
Transform y such that there is no cube root in the equation, for the ease of solving
$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
Differentiating y with respect to x
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$
Similarly here,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$
From the table of derivatives of trigonometric functions,
$
\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\
\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\
\\
$
Now,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$
Take –cosec x common,
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$
Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $
\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\
\\
$
= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$
Hence the answer.
Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.
Complete step-by-step answer:
Given Data,
y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$
Transform y such that there is no cube root in the equation, for the ease of solving
$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
Differentiating y with respect to x
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$
Similarly here,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$
From the table of derivatives of trigonometric functions,
$
\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\
\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\
\\
$
Now,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$
Take –cosec x common,
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$
Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $
\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\
\\
$
= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$
Hence the answer.
Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE