
If y is a function of x defined by ${a^{x + y}} = {a^x} + {a^y}$ where a is a real constant (a>1) then the domain of y(x) is
A) $\left( {0, + \infty } \right)$
B) $\left( { - \infty ,0} \right)$
C) $\left( { - 1, + \infty } \right)$
D) $\left( { - \infty ,1} \right)$
Answer
421.5k+ views
Hint: To find the domain of ${a^{x + y}} = {a^x} + {a^y}$, first of all, simplify the function. Then we will take log on both sides and as we know that logarithm of a negative number is not possible, we will take the value of log greater than 0 and find the domain.
Complete step by step solution:
In this question, we are given that y is a function of x and is defined by ${a^{x + y}} = {a^x} + {a^y}$ and we need to find the domain of the function y(x).
Given: ${a^{x + y}} = {a^x} + {a^y}$
First of all, let us see the definition of range.
The domain of a function is the set of all possible input values that produce some output value range.
To find the domain of the given function, we need to simplify it further.
$ \Rightarrow {a^{x + y}} = {a^x} + {a^y}$- - - - - -(1)
Now, we know the property that when two numbers having same base are multiplied, we add their powers. So we can write
${a^{x + y}} = {a^x} \cdot {a^y}$
Therefore, equation (1) becomes
$ \Rightarrow {a^x} \cdot {a^y} = {a^x} + {a^y}$
Now, divide both LHS and RHS with ${a^x} \cdot {a^y}$, we get
\[
\Rightarrow \dfrac{{{a^x} \cdot {a^y}}}{{{a^x} \cdot {a^y}}} = \dfrac{{{a^x} + {a^y}}}{{{a^x} \cdot {a^y}}} \\
\Rightarrow 1 = \dfrac{1}{{{a^y}}} + \dfrac{1}{{{a^x}}} \\
\]
Now, we can write the inverse of any term as $\dfrac{1}{x} = {x^{ - 1}}$. Therefore,
\[
\Rightarrow 1 = {a^{ - x}} + {a^{ - y}} \\
\Rightarrow {a^{ - y}} = 1 - {a^{ - x}} \\
\]
Now, taking log with base a on both sides, we get
\[
\Rightarrow {\log _a}{a^{ - y}} = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow - y{\log _a}a = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Now, we know that value of ${\log _a}a = 1$. Therefore, we get
\[
\Rightarrow - y = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow y = - {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Therefore,
\[
\Rightarrow 1 - {a^{ - x}} > 0 \\
\Rightarrow {a^{ - x}} < 1 \\
\Rightarrow {a^x} > 1 \\
\Rightarrow x > 0 \\
\]
Hence, the values can be anything greater than 0 to $\infty $.
Therefore, the domain of $y\left( x \right)$ is $\left( {0, + \infty } \right)$. So, our correct option is option (A).
Note:
Note that here we have taken \[1 - {a^{ - x}} > 0\] because, logarithm of a negative number is not possible and hence the value of \[1 - {a^{ - x}}\] must be greater than 0.
Other important point is that we have taken $x > 0$ for ${a^x} > 1$ as we know that ${a^x}$ will be equal to 1 only when $x = 0$, but here ${a^x} > 1$ and so the value of x cannot be 0 and hence, $x > 0$.
Complete step by step solution:
In this question, we are given that y is a function of x and is defined by ${a^{x + y}} = {a^x} + {a^y}$ and we need to find the domain of the function y(x).
Given: ${a^{x + y}} = {a^x} + {a^y}$
First of all, let us see the definition of range.
The domain of a function is the set of all possible input values that produce some output value range.
To find the domain of the given function, we need to simplify it further.
$ \Rightarrow {a^{x + y}} = {a^x} + {a^y}$- - - - - -(1)
Now, we know the property that when two numbers having same base are multiplied, we add their powers. So we can write
${a^{x + y}} = {a^x} \cdot {a^y}$
Therefore, equation (1) becomes
$ \Rightarrow {a^x} \cdot {a^y} = {a^x} + {a^y}$
Now, divide both LHS and RHS with ${a^x} \cdot {a^y}$, we get
\[
\Rightarrow \dfrac{{{a^x} \cdot {a^y}}}{{{a^x} \cdot {a^y}}} = \dfrac{{{a^x} + {a^y}}}{{{a^x} \cdot {a^y}}} \\
\Rightarrow 1 = \dfrac{1}{{{a^y}}} + \dfrac{1}{{{a^x}}} \\
\]
Now, we can write the inverse of any term as $\dfrac{1}{x} = {x^{ - 1}}$. Therefore,
\[
\Rightarrow 1 = {a^{ - x}} + {a^{ - y}} \\
\Rightarrow {a^{ - y}} = 1 - {a^{ - x}} \\
\]
Now, taking log with base a on both sides, we get
\[
\Rightarrow {\log _a}{a^{ - y}} = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow - y{\log _a}a = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Now, we know that value of ${\log _a}a = 1$. Therefore, we get
\[
\Rightarrow - y = {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\Rightarrow y = - {\log _a}\left( {1 - {a^{ - x}}} \right) \\
\]
Therefore,
\[
\Rightarrow 1 - {a^{ - x}} > 0 \\
\Rightarrow {a^{ - x}} < 1 \\
\Rightarrow {a^x} > 1 \\
\Rightarrow x > 0 \\
\]
Hence, the values can be anything greater than 0 to $\infty $.
Therefore, the domain of $y\left( x \right)$ is $\left( {0, + \infty } \right)$. So, our correct option is option (A).
Note:
Note that here we have taken \[1 - {a^{ - x}} > 0\] because, logarithm of a negative number is not possible and hence the value of \[1 - {a^{ - x}}\] must be greater than 0.
Other important point is that we have taken $x > 0$ for ${a^x} > 1$ as we know that ${a^x}$ will be equal to 1 only when $x = 0$, but here ${a^x} > 1$ and so the value of x cannot be 0 and hence, $x > 0$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
