Answer
Verified
398.4k+ views
Hint: In order to solve the equation, check that where the term $y$ has repeated and, then mark them as $y$ , we will get a shorter equation. Then to remove the square root, square both the sides. Then differentiate the terms with respect to $x$ and separate the variables on one side.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE