Answer
Verified
500.4k+ views
Hint: Here ${{y}_{1}},{{y}_{2}},{{y}_{3}}$ are the first, second and third derivatives. First convert the given expression into simpler $y$ and $x$ terms and then start differentiating.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE