Answer
Verified
498.6k+ views
Hint: Consider ‘y’ as composite function of f(g(x)) where f(x) is $\sec x$ and g(x) is ${{\tan }^{-1}}x$ and then use the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$
Where ${{f}^{'}}\left( g\left( x \right) \right)$ is differentiation of f(x) keeping g(x) as it is and $g'(x)$ means differentiating g(x) irrespective of f(x).
“Complete step-by-step answer:”
We are given with the function
$y=\sec \left( {{\tan }^{-1}}x \right)$
Now we are asked to find $\left( \dfrac{dy}{dx} \right)$ which means we have to differentiate ‘y’ with respect to ‘x’.
Let us consider two functions f(x) and g(x) where f(x) be $\sec x$ and g(x) be ${{\tan }^{-1}}x$.
So we can write,
$y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=f\left( g\left( x \right) \right)$
Now we have to differentiate ‘y’ with respect to ‘x’ using the identity,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\times g'\left( x \right)$
Here \[f'\left( g\left( x \right) \right)\] means differentiating f(x) keeping g(x) constant and here $g'\left( x \right)$ means differentiating g(x) independently irrespective of f(x).
So by using the formula which are,
$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$, $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$
We get,
\[~\dfrac{dy}{dx}=\sec \left( {{\tan }^{-1}}x \right).\tan \left( {{\tan }^{-1}}x \right).\dfrac{1}{\left( 1+{{x}^{2}} \right)}..........(i)\]
Now here we can use the identity,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=x \\
& \sec \left( {{\tan }^{-1}}x \right)=\sqrt{1+{{x}^{2}}} \\
\end{align}$
By using these identities, equation (i) can be written as
$\dfrac{dy}{dx}=\sqrt{1+{{x}^{2}}}.x.\dfrac{1}{1+{{x}^{2}}}$
By rationalizing the above equation, we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{\sqrt{1+{{x}^{2}}}}$
Therefore this is the required differentiation.
Hence the correct answer is option (a).
Note: There is alternative way of solving the problem is by converting $y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=\sqrt{1+{{x}^{2}}}$ and using $f\left( x \right)=\sqrt{x}$ and $g\left( x \right)=\left( 1+{{x}^{2}} \right)$ . Thus solving same by the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ to get desired result.
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$
Where ${{f}^{'}}\left( g\left( x \right) \right)$ is differentiation of f(x) keeping g(x) as it is and $g'(x)$ means differentiating g(x) irrespective of f(x).
“Complete step-by-step answer:”
We are given with the function
$y=\sec \left( {{\tan }^{-1}}x \right)$
Now we are asked to find $\left( \dfrac{dy}{dx} \right)$ which means we have to differentiate ‘y’ with respect to ‘x’.
Let us consider two functions f(x) and g(x) where f(x) be $\sec x$ and g(x) be ${{\tan }^{-1}}x$.
So we can write,
$y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=f\left( g\left( x \right) \right)$
Now we have to differentiate ‘y’ with respect to ‘x’ using the identity,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\times g'\left( x \right)$
Here \[f'\left( g\left( x \right) \right)\] means differentiating f(x) keeping g(x) constant and here $g'\left( x \right)$ means differentiating g(x) independently irrespective of f(x).
So by using the formula which are,
$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$, $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$
We get,
\[~\dfrac{dy}{dx}=\sec \left( {{\tan }^{-1}}x \right).\tan \left( {{\tan }^{-1}}x \right).\dfrac{1}{\left( 1+{{x}^{2}} \right)}..........(i)\]
Now here we can use the identity,
$\begin{align}
& \tan \left( {{\tan }^{-1}}x \right)=x \\
& \sec \left( {{\tan }^{-1}}x \right)=\sqrt{1+{{x}^{2}}} \\
\end{align}$
By using these identities, equation (i) can be written as
$\dfrac{dy}{dx}=\sqrt{1+{{x}^{2}}}.x.\dfrac{1}{1+{{x}^{2}}}$
By rationalizing the above equation, we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{\sqrt{1+{{x}^{2}}}}$
Therefore this is the required differentiation.
Hence the correct answer is option (a).
Note: There is alternative way of solving the problem is by converting $y=\sec \left( {{\tan }^{-1}}x \right)$ as $y=\sqrt{1+{{x}^{2}}}$ and using $f\left( x \right)=\sqrt{x}$ and $g\left( x \right)=\left( 1+{{x}^{2}} \right)$ . Thus solving same by the identity
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ to get desired result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE