Answer
Verified
460.5k+ views
Hint: First try to find out the $z$ after getting rationalise it and try to convert it as $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ Now we have to find out the ${z^{20}}$ so take $20$ on both sides and solve according to that .
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE