
If$A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$,prove that$(A - 2I)(A - 3I) = 0$
Answer
621.9k+ views
Hint: $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Given, $A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$. First, we’ll compute $(A - 2I)$where$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$.
$
(A - 2I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&0 \\
0&2
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 2}&{2 - 0} \\
{ - 1 - 0}&{1 - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right] \\
$
Now, $
(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&0 \\
0&3
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 3}&{2 - 0} \\
{ - 1 - 0}&{1 - 3}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \\
$
And, \[
(A - 2I)(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + 2 \times ( - 1)}&{2 \times 2 + 2 \times ( - 2)} \\
{( - 1) \times 1 + ( - 1) \times ( - 1)}&{( - 1) \times 2 + ( - 1) \times ( - 2)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 2}&{4 - 4} \\
{ - 1 + 1}&{ - 2 + 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right] \Rightarrow 0 \\
\]
Hence Proved.
Note: It is crucial to perform scalar multiplication with matrix and matrix addition/subtraction with accuracy to achieve the correct solution.
1&0 \\
0&1
\end{array}} \right]$
Given, $A = \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]$. First, we’ll compute $(A - 2I)$where$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$.
$
(A - 2I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&0 \\
0&2
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 2}&{2 - 0} \\
{ - 1 - 0}&{1 - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right] \\
$
Now, $
(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&0 \\
0&3
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{4 - 3}&{2 - 0} \\
{ - 1 - 0}&{1 - 3}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \\
$
And, \[
(A - 2I)(A - 3I) \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&2 \\
{ - 1}&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&{ - 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + 2 \times ( - 1)}&{2 \times 2 + 2 \times ( - 2)} \\
{( - 1) \times 1 + ( - 1) \times ( - 1)}&{( - 1) \times 2 + ( - 1) \times ( - 2)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 - 2}&{4 - 4} \\
{ - 1 + 1}&{ - 2 + 2}
\end{array}} \right] \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right] \Rightarrow 0 \\
\]
Hence Proved.
Note: It is crucial to perform scalar multiplication with matrix and matrix addition/subtraction with accuracy to achieve the correct solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

