![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If\[bc:ac:ab = 1:2:3\] then find\[\dfrac{a}{{bc}}:\dfrac{b}{{ca}}\]
Answer
483.9k+ views
Hint: Ratio is the relation between two numbers which shows how much bigger one quantity is than another.
In a ratio between three numbers the value of each part is found by dividing the given amount by the sum of the parts in the ratio. We then multiply each number in the ratio by the value of each part in ratio \[a:b = \dfrac{a}{b}\]
Complete step-by- step solution:
Given \[bc:ac:ab = 1:3:5.......(1)\]
i.e.\[bc:ac = 1:3\] {from (1)}
\[ \Rightarrow \dfrac{{bc}}{{ac}} = \dfrac{1}{3}\]
On cancelling c from the equation, we get:
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}.........(2)\]
Again from (1) \[ac:ab = 3:5\]
\[ \Rightarrow \dfrac{{ac}}{{ab}} = \dfrac{3}{5}\]
On cancelling ‘a’ from the equation, we get:
\[ \Rightarrow \dfrac{c}{b} = \dfrac{3}{5}.........(3)\]
From equations (2) and (3)
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}\] and \[\dfrac{c}{b} = \dfrac{3}{5}\]
As the value of b is not same in both cases, we will be making it equal by multiplying and dividing (2) by 5
We have:
\[\dfrac{b}{a} = \dfrac{1}{3} \times \dfrac{5}{5} = \dfrac{5}{{15}}\]
\[\dfrac{b}{a} = \dfrac{5}{{15}}..........(4)\]
Compare eqn. (3) by eqn. (4)
We get \[a = 15,b = 5\] and \[c - 13\] because the value of b in both equations is 5.
i.e. \[a:b:c = 15:5:3\]
To find \[\dfrac{a}{{bc}} = \dfrac{b}{{ca}}\]
Put \[a = 15,b = 5,c = 3\]
\[\dfrac{{15}}{{5 \times 3}}:\dfrac{5}{{3 \times 15}}\]
\[ \Rightarrow \dfrac{{15}}{{15}}:\dfrac{5}{{15}}\]
\[ \Rightarrow 1:\dfrac{1}{3}\]
Multiply the above whole term with 3, we get:
\[ \Rightarrow 3 \times 1:3 \times \dfrac{1}{3}\]
\[ \Rightarrow 3:1\]
Hence, \[\dfrac{a}{{bc}}:\dfrac{b}{{ca}} = 3:1\]
Note: Consider two ratios to be \[a:b\] and \[c:d\]
Then in order to find the continued proportion for the two given ratio terms, we convert the means to a single term/number. This would, in general, be the LCM of means.
For the given ratio, the LCM of \[b\]&\[c\] will be\[bc\].
Thus, multiplying the first ratio by \[c\] and second ratio by \[b\], we have
First ratio- \[ca:bc\]
Second ratio- \[bc:bd\]
Thus, the continued proportion can be written in the form of \[ca:bc:bd\].
In ratio if \[a:b:c = x:y:z\]then we can compare \[a:b = x:y\] and \[b:c = y:z\]in ratio we can divide and multiply throughout by any number as it will not affect the ratio.
In a ratio between three numbers the value of each part is found by dividing the given amount by the sum of the parts in the ratio. We then multiply each number in the ratio by the value of each part in ratio \[a:b = \dfrac{a}{b}\]
Complete step-by- step solution:
Given \[bc:ac:ab = 1:3:5.......(1)\]
i.e.\[bc:ac = 1:3\] {from (1)}
\[ \Rightarrow \dfrac{{bc}}{{ac}} = \dfrac{1}{3}\]
On cancelling c from the equation, we get:
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}.........(2)\]
Again from (1) \[ac:ab = 3:5\]
\[ \Rightarrow \dfrac{{ac}}{{ab}} = \dfrac{3}{5}\]
On cancelling ‘a’ from the equation, we get:
\[ \Rightarrow \dfrac{c}{b} = \dfrac{3}{5}.........(3)\]
From equations (2) and (3)
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}\] and \[\dfrac{c}{b} = \dfrac{3}{5}\]
As the value of b is not same in both cases, we will be making it equal by multiplying and dividing (2) by 5
We have:
\[\dfrac{b}{a} = \dfrac{1}{3} \times \dfrac{5}{5} = \dfrac{5}{{15}}\]
\[\dfrac{b}{a} = \dfrac{5}{{15}}..........(4)\]
Compare eqn. (3) by eqn. (4)
We get \[a = 15,b = 5\] and \[c - 13\] because the value of b in both equations is 5.
i.e. \[a:b:c = 15:5:3\]
To find \[\dfrac{a}{{bc}} = \dfrac{b}{{ca}}\]
Put \[a = 15,b = 5,c = 3\]
\[\dfrac{{15}}{{5 \times 3}}:\dfrac{5}{{3 \times 15}}\]
\[ \Rightarrow \dfrac{{15}}{{15}}:\dfrac{5}{{15}}\]
\[ \Rightarrow 1:\dfrac{1}{3}\]
Multiply the above whole term with 3, we get:
\[ \Rightarrow 3 \times 1:3 \times \dfrac{1}{3}\]
\[ \Rightarrow 3:1\]
Hence, \[\dfrac{a}{{bc}}:\dfrac{b}{{ca}} = 3:1\]
Note: Consider two ratios to be \[a:b\] and \[c:d\]
Then in order to find the continued proportion for the two given ratio terms, we convert the means to a single term/number. This would, in general, be the LCM of means.
For the given ratio, the LCM of \[b\]&\[c\] will be\[bc\].
Thus, multiplying the first ratio by \[c\] and second ratio by \[b\], we have
First ratio- \[ca:bc\]
Second ratio- \[bc:bd\]
Thus, the continued proportion can be written in the form of \[ca:bc:bd\].
In ratio if \[a:b:c = x:y:z\]then we can compare \[a:b = x:y\] and \[b:c = y:z\]in ratio we can divide and multiply throughout by any number as it will not affect the ratio.
Recently Updated Pages
Out of 30 students in a class 6 like football 12 like class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Number of Prime between 1 to 100 is class 6 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many time zones are in China class 6 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What are the main physical divisions of India class 6 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write short notes on the island groups of India class 6 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the pairs of natural numbers whose least common class 6 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)