
If\[bc:ac:ab = 1:2:3\] then find\[\dfrac{a}{{bc}}:\dfrac{b}{{ca}}\]
Answer
493.2k+ views
Hint: Ratio is the relation between two numbers which shows how much bigger one quantity is than another.
In a ratio between three numbers the value of each part is found by dividing the given amount by the sum of the parts in the ratio. We then multiply each number in the ratio by the value of each part in ratio \[a:b = \dfrac{a}{b}\]
Complete step-by- step solution:
Given \[bc:ac:ab = 1:3:5.......(1)\]
i.e.\[bc:ac = 1:3\] {from (1)}
\[ \Rightarrow \dfrac{{bc}}{{ac}} = \dfrac{1}{3}\]
On cancelling c from the equation, we get:
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}.........(2)\]
Again from (1) \[ac:ab = 3:5\]
\[ \Rightarrow \dfrac{{ac}}{{ab}} = \dfrac{3}{5}\]
On cancelling ‘a’ from the equation, we get:
\[ \Rightarrow \dfrac{c}{b} = \dfrac{3}{5}.........(3)\]
From equations (2) and (3)
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}\] and \[\dfrac{c}{b} = \dfrac{3}{5}\]
As the value of b is not same in both cases, we will be making it equal by multiplying and dividing (2) by 5
We have:
\[\dfrac{b}{a} = \dfrac{1}{3} \times \dfrac{5}{5} = \dfrac{5}{{15}}\]
\[\dfrac{b}{a} = \dfrac{5}{{15}}..........(4)\]
Compare eqn. (3) by eqn. (4)
We get \[a = 15,b = 5\] and \[c - 13\] because the value of b in both equations is 5.
i.e. \[a:b:c = 15:5:3\]
To find \[\dfrac{a}{{bc}} = \dfrac{b}{{ca}}\]
Put \[a = 15,b = 5,c = 3\]
\[\dfrac{{15}}{{5 \times 3}}:\dfrac{5}{{3 \times 15}}\]
\[ \Rightarrow \dfrac{{15}}{{15}}:\dfrac{5}{{15}}\]
\[ \Rightarrow 1:\dfrac{1}{3}\]
Multiply the above whole term with 3, we get:
\[ \Rightarrow 3 \times 1:3 \times \dfrac{1}{3}\]
\[ \Rightarrow 3:1\]
Hence, \[\dfrac{a}{{bc}}:\dfrac{b}{{ca}} = 3:1\]
Note: Consider two ratios to be \[a:b\] and \[c:d\]
Then in order to find the continued proportion for the two given ratio terms, we convert the means to a single term/number. This would, in general, be the LCM of means.
For the given ratio, the LCM of \[b\]&\[c\] will be\[bc\].
Thus, multiplying the first ratio by \[c\] and second ratio by \[b\], we have
First ratio- \[ca:bc\]
Second ratio- \[bc:bd\]
Thus, the continued proportion can be written in the form of \[ca:bc:bd\].
In ratio if \[a:b:c = x:y:z\]then we can compare \[a:b = x:y\] and \[b:c = y:z\]in ratio we can divide and multiply throughout by any number as it will not affect the ratio.
In a ratio between three numbers the value of each part is found by dividing the given amount by the sum of the parts in the ratio. We then multiply each number in the ratio by the value of each part in ratio \[a:b = \dfrac{a}{b}\]
Complete step-by- step solution:
Given \[bc:ac:ab = 1:3:5.......(1)\]
i.e.\[bc:ac = 1:3\] {from (1)}
\[ \Rightarrow \dfrac{{bc}}{{ac}} = \dfrac{1}{3}\]
On cancelling c from the equation, we get:
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}.........(2)\]
Again from (1) \[ac:ab = 3:5\]
\[ \Rightarrow \dfrac{{ac}}{{ab}} = \dfrac{3}{5}\]
On cancelling ‘a’ from the equation, we get:
\[ \Rightarrow \dfrac{c}{b} = \dfrac{3}{5}.........(3)\]
From equations (2) and (3)
\[ \Rightarrow \dfrac{b}{a} = \dfrac{1}{3}\] and \[\dfrac{c}{b} = \dfrac{3}{5}\]
As the value of b is not same in both cases, we will be making it equal by multiplying and dividing (2) by 5
We have:
\[\dfrac{b}{a} = \dfrac{1}{3} \times \dfrac{5}{5} = \dfrac{5}{{15}}\]
\[\dfrac{b}{a} = \dfrac{5}{{15}}..........(4)\]
Compare eqn. (3) by eqn. (4)
We get \[a = 15,b = 5\] and \[c - 13\] because the value of b in both equations is 5.
i.e. \[a:b:c = 15:5:3\]
To find \[\dfrac{a}{{bc}} = \dfrac{b}{{ca}}\]
Put \[a = 15,b = 5,c = 3\]
\[\dfrac{{15}}{{5 \times 3}}:\dfrac{5}{{3 \times 15}}\]
\[ \Rightarrow \dfrac{{15}}{{15}}:\dfrac{5}{{15}}\]
\[ \Rightarrow 1:\dfrac{1}{3}\]
Multiply the above whole term with 3, we get:
\[ \Rightarrow 3 \times 1:3 \times \dfrac{1}{3}\]
\[ \Rightarrow 3:1\]
Hence, \[\dfrac{a}{{bc}}:\dfrac{b}{{ca}} = 3:1\]
Note: Consider two ratios to be \[a:b\] and \[c:d\]
Then in order to find the continued proportion for the two given ratio terms, we convert the means to a single term/number. This would, in general, be the LCM of means.
For the given ratio, the LCM of \[b\]&\[c\] will be\[bc\].
Thus, multiplying the first ratio by \[c\] and second ratio by \[b\], we have
First ratio- \[ca:bc\]
Second ratio- \[bc:bd\]
Thus, the continued proportion can be written in the form of \[ca:bc:bd\].
In ratio if \[a:b:c = x:y:z\]then we can compare \[a:b = x:y\] and \[b:c = y:z\]in ratio we can divide and multiply throughout by any number as it will not affect the ratio.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
The sum of two negative integers is always a integ class 6 maths CBSE

Write a formal letter on this topic Write a formal class 6 english CBSE

Write short notes on the island groups of India class 6 social science CBSE

What is the GCF of 36 and 60 class 6 maths CBSE

Find the pairs of natural numbers whose least common class 6 maths CBSE

Worlds largest producer of jute is aBangladesh bIndia class 9 social science CBSE
