Answer
Verified
397.8k+ views
Hint: In this problem, arithmetic progression method is used to solve the determinant of arithmetic progression which terms \[{T_m},{T_n},{T_k}\] are \[{m^{th}},{n^{th}}\] and \[{k^{th}}\] . We use the formula for the \[{n^{th}}\] terms of arithmetic sequence is mentioned as follows, \[{T_n} = a + (n - 1)d\] .Arithmetic progression is defined as a mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP.
Complete step-by-step answer:
In the problem, we are given the determinant of A.P,
\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right|\]
Comparing the formulas with the determinant of A.P, we have
For \[{m^{th}}\]term,\[{T_m} = a + (m - 1)d\]
For \[{n^{th}}\] term, \[{T_n} = a + (n - 1)d\]
For \[{k^{th}}\]term, \[{T_k} = a + (k - 1)d\]
Let \[a\] be the first term of A.P.
Let \[d\] be the common difference.
\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right|\]
By substitute the above formula, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{a + (m - 1)d}&m&1 \\
{a + (n - 1)d}&n&1 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
We need to perform row subtraction in further step, we get
Eliminate the last element of the first row as 0.
\[{R_1} \to {R_1} - {R_2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{(m - n)d}&{m - n}&0 \\
{a + (n - 1)d}&n&1 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
Eliminate the last element of the second row as 0.
\[{R_2} \to {R_2} - {R_3}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{(m - n)d}&{m - n}&0 \\
{(n - k)d}&{n - k}&0 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
Taking common factor out from the 2nd row and 3rd column, then
\[ \Rightarrow (m - n)(n - k)\left| {\begin{array}{*{20}{c}}
d&1&0 \\
d&1&0 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
By simplify the determinant of A.P, we get
\[ \Rightarrow (m - n)(n - k)[d(1 - 0) - 1(d - 0) + 0(dk - a - (k - 1)d]\]
By simplify in further step, we get
\[ \Rightarrow (m - n)(n - k)[d - d + 0] = 0\]
Therefore, the \[{m^{th}},{n^{th}}\]and\[{k^{th}}\]terms of an A.P. then\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right| = 0\]
The final answer is Option(C) \[0\].
So, the correct answer is “OPTION C”.
Note: In this problem we need to find the terms of an arithmetic progression of the given determinant. Arithmetic progression is defined as a mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP. Here, we need to remember the formula for finding the \[{n^{th}}\] term of A.P is \[{T_n} = a + (n - 1)d\] . Where, \[a\] be the first term of A.P , \[d\] be the common difference and \[n\] be the number of terms.
Complete step-by-step answer:
In the problem, we are given the determinant of A.P,
\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right|\]
Comparing the formulas with the determinant of A.P, we have
For \[{m^{th}}\]term,\[{T_m} = a + (m - 1)d\]
For \[{n^{th}}\] term, \[{T_n} = a + (n - 1)d\]
For \[{k^{th}}\]term, \[{T_k} = a + (k - 1)d\]
Let \[a\] be the first term of A.P.
Let \[d\] be the common difference.
\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right|\]
By substitute the above formula, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{a + (m - 1)d}&m&1 \\
{a + (n - 1)d}&n&1 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
We need to perform row subtraction in further step, we get
Eliminate the last element of the first row as 0.
\[{R_1} \to {R_1} - {R_2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{(m - n)d}&{m - n}&0 \\
{a + (n - 1)d}&n&1 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
Eliminate the last element of the second row as 0.
\[{R_2} \to {R_2} - {R_3}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{(m - n)d}&{m - n}&0 \\
{(n - k)d}&{n - k}&0 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
Taking common factor out from the 2nd row and 3rd column, then
\[ \Rightarrow (m - n)(n - k)\left| {\begin{array}{*{20}{c}}
d&1&0 \\
d&1&0 \\
{a + (k - 1)d}&k&1
\end{array}} \right|\]
By simplify the determinant of A.P, we get
\[ \Rightarrow (m - n)(n - k)[d(1 - 0) - 1(d - 0) + 0(dk - a - (k - 1)d]\]
By simplify in further step, we get
\[ \Rightarrow (m - n)(n - k)[d - d + 0] = 0\]
Therefore, the \[{m^{th}},{n^{th}}\]and\[{k^{th}}\]terms of an A.P. then\[\left| {\begin{array}{*{20}{c}}
{{T_m}}&m&1 \\
{{T_n}}&n&1 \\
{{T_k}}&k&1
\end{array}} \right| = 0\]
The final answer is Option(C) \[0\].
So, the correct answer is “OPTION C”.
Note: In this problem we need to find the terms of an arithmetic progression of the given determinant. Arithmetic progression is defined as a mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP. Here, we need to remember the formula for finding the \[{n^{th}}\] term of A.P is \[{T_n} = a + (n - 1)d\] . Where, \[a\] be the first term of A.P , \[d\] be the common difference and \[n\] be the number of terms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE