Answer
Verified
502.2k+ views
Hint: Simplify the given line equation and substitute it into the parametric equation.
The given equations are,
$x=4+\dfrac{t}{\sqrt{2}}$ and $y=-1+\sqrt{2}t$
We have to rearrange these such that we can formulate an equation in $x$ and $y$ terms. To
change the parametric form of the equation, multiply the equation $x=4+\dfrac{t}{\sqrt{2}}$ by $2$,
$2x=8+\dfrac{2t}{\sqrt{2}}$
$2x=8+\sqrt{2}t$
From this we can write,
$\sqrt{2}t=2x-8$
Now, we can substitute this in the equation $y=-1+\sqrt{2}t$,
$y=-1+\left( 2x-8 \right)$
$y=2x-9$
The options indicate that we need to compute the slope and the intercepts of the line $y=2x-9$. It is
in the form of $y=mx+c$, where $m$ is the slope and $c$ is the y-intercept.
On comparing the equation $y=2x-9$ with the general form, we get the slope as $2$ and the y-
intercept as $-9$.
The x-intercept can be computed by taking $y=0$,
$0=2x-9$
$x=\dfrac{9}{2}$
Looking at the options, we get that both option (c) and (d) are true.
Note: The slope of a line is given by $\tan \theta $ or by $\dfrac{y}{x}$. We get the slope as $2$ for
the line in the question. It means that $\tan \theta =2$ is the slope of the line. The angle of
inclination of a line is represented by ${{\tan }^{-1}}\theta $. So, the options (a) and (b) do not
represent the slope but the angle of inclination of the line.
The given equations are,
$x=4+\dfrac{t}{\sqrt{2}}$ and $y=-1+\sqrt{2}t$
We have to rearrange these such that we can formulate an equation in $x$ and $y$ terms. To
change the parametric form of the equation, multiply the equation $x=4+\dfrac{t}{\sqrt{2}}$ by $2$,
$2x=8+\dfrac{2t}{\sqrt{2}}$
$2x=8+\sqrt{2}t$
From this we can write,
$\sqrt{2}t=2x-8$
Now, we can substitute this in the equation $y=-1+\sqrt{2}t$,
$y=-1+\left( 2x-8 \right)$
$y=2x-9$
The options indicate that we need to compute the slope and the intercepts of the line $y=2x-9$. It is
in the form of $y=mx+c$, where $m$ is the slope and $c$ is the y-intercept.
On comparing the equation $y=2x-9$ with the general form, we get the slope as $2$ and the y-
intercept as $-9$.
The x-intercept can be computed by taking $y=0$,
$0=2x-9$
$x=\dfrac{9}{2}$
Looking at the options, we get that both option (c) and (d) are true.
Note: The slope of a line is given by $\tan \theta $ or by $\dfrac{y}{x}$. We get the slope as $2$ for
the line in the question. It means that $\tan \theta =2$ is the slope of the line. The angle of
inclination of a line is represented by ${{\tan }^{-1}}\theta $. So, the options (a) and (b) do not
represent the slope but the angle of inclination of the line.
Recently Updated Pages
How do you change dfrac7pi 9 radians to degree mea class 11 maths CBSE
What is the CGS unit of force A N B Nm C dyne D dy class 11 physics CBSE
Cestoda is differentiated from other flatworms by the class 11 biology CBSE
Where do certain symbiotic microorganisms normally class 11 biology CBSE
Certain force acting on a 20kg mass changes its velocity class 11 physics CBSE
Ceric ammonium sulphate and potassium permanganate class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE