Answer
Verified
470.1k+ views
Hint: This problem can be solved by combining the formulae for the force on a body in terms of the change in momentum in a time period and the impulse on a body in terms of the force on it and the time period that the force acts on. By doing this, we will get the required relation of impulse with momentum.
Formula used:
$F=\dfrac{\Delta p}{t}$
$J=Ft$
Complete step by step answer:
Let us use the formula for the force on a body in terms of the change in its momentum in a time period.
The magnitude of force $F$ acting on a body for a time period $t$ can be written as
$F=\dfrac{\Delta p}{t}$ --(1)
Where $\Delta p$ is the change in momentum of the body due to the action of that force.
Now, let us write the formula for the impulse on a body in terms of the force on it and the time period for which it acts.
The impulse $J$ on a body due to the application of a force $F$ on it for a time period $t$ is given as
$J=Ft$
$\therefore F=\dfrac{J}{t}$ --(2)
Putting (2) in (1), we get
$\dfrac{J}{t}=\dfrac{\Delta p}{t}$
$\therefore J=\Delta p$
Hence, we have got the relation that the impulse on a body is equal to its change in momentum.
Therefore, the correct option is B) Change in momentum.
Note:
Students sometimes get confused between the terms jerk and impulse. However, they must remember that impulse is the change in momentum, that is, it considers the mass of the body. However, jerk is only the rate of change of acceleration of the body and the mass of the body does not come into the picture in its mathematical expression.
Formula used:
$F=\dfrac{\Delta p}{t}$
$J=Ft$
Complete step by step answer:
Let us use the formula for the force on a body in terms of the change in its momentum in a time period.
The magnitude of force $F$ acting on a body for a time period $t$ can be written as
$F=\dfrac{\Delta p}{t}$ --(1)
Where $\Delta p$ is the change in momentum of the body due to the action of that force.
Now, let us write the formula for the impulse on a body in terms of the force on it and the time period for which it acts.
The impulse $J$ on a body due to the application of a force $F$ on it for a time period $t$ is given as
$J=Ft$
$\therefore F=\dfrac{J}{t}$ --(2)
Putting (2) in (1), we get
$\dfrac{J}{t}=\dfrac{\Delta p}{t}$
$\therefore J=\Delta p$
Hence, we have got the relation that the impulse on a body is equal to its change in momentum.
Therefore, the correct option is B) Change in momentum.
Note:
Students sometimes get confused between the terms jerk and impulse. However, they must remember that impulse is the change in momentum, that is, it considers the mass of the body. However, jerk is only the rate of change of acceleration of the body and the mass of the body does not come into the picture in its mathematical expression.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers