Answer
Verified
479.7k+ views
Hint: To solve this question, we need to know the concept of probability that is nothing but the ratio of the favorable number of outcomes to the total number of outcomes of an event. We can represent it mathematically as
\[\text{Probability = }\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}\]
Complete step-by-step answer:
In this question, we have to find the probability of a ball that is picked up randomly and is neither blue nor green. To find this we need to know the concept of the probability that is nothing but the ratio of the favorable number of outcomes to the total number of outcomes of an event. Mathematically, we can represent it as,
\[\text{Probability = }\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}\]
To solve this, we will require the probability of choosing the blue ball which is
\[\text{P}\left( B \right)=\dfrac{\text{Number of blue balls }}{\text{Total number of balls}}\]
\[P\left( B \right)=\dfrac{7}{21}\]
\[P\left( B \right)=\dfrac{1}{3}\]
Also, we will require the probability of choosing the green ball which is
\[\text{P}\left( G \right)=\dfrac{\text{Number of green balls }}{\text{Total number of balls}}\]
\[P\left( G \right)=\dfrac{6}{21}\]
\[P\left( G \right)=\dfrac{2}{7}\]
Now, we have to find the probability of neither blue nor green balls. So, we can say that the probability is
P (Neither blue nor green) = 1 – P(B) – P(G)
Because the total probability of an event is always 1 and if we subtract the probabilities of events which we do not require from 1, we will get the required event probability. Now, we will put the values of P(B) and P(G). So, we will get,
P (Neither blue nor green) = \[1-\dfrac{1}{3}-\dfrac{2}{7}\]
Now, we will simplify it to get the answer.
P (Neither blue nor green) \[=\dfrac{21-7-6}{21}\]
P (Neither blue nor green) = \[\dfrac{8}{21}\]
Hence, the probability of the ball which we picked up is neither blue nor green is \[\dfrac{8}{21}\].
Therefore, option (d) is the right answer.
Note: We can also find the probability of choosing neither blue nor green ball by finding the probability of choosing the red ball because the box contains only 3 colors and out of the 3, we do not want 2 colors that are blue and green. So, definitely, we want the red color ball, that is \[P\left( R \right)=\dfrac{8}{21}\]= P (Neither blue nor green).
\[\text{Probability = }\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}\]
Complete step-by-step answer:
In this question, we have to find the probability of a ball that is picked up randomly and is neither blue nor green. To find this we need to know the concept of the probability that is nothing but the ratio of the favorable number of outcomes to the total number of outcomes of an event. Mathematically, we can represent it as,
\[\text{Probability = }\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}\]
To solve this, we will require the probability of choosing the blue ball which is
\[\text{P}\left( B \right)=\dfrac{\text{Number of blue balls }}{\text{Total number of balls}}\]
\[P\left( B \right)=\dfrac{7}{21}\]
\[P\left( B \right)=\dfrac{1}{3}\]
Also, we will require the probability of choosing the green ball which is
\[\text{P}\left( G \right)=\dfrac{\text{Number of green balls }}{\text{Total number of balls}}\]
\[P\left( G \right)=\dfrac{6}{21}\]
\[P\left( G \right)=\dfrac{2}{7}\]
Now, we have to find the probability of neither blue nor green balls. So, we can say that the probability is
P (Neither blue nor green) = 1 – P(B) – P(G)
Because the total probability of an event is always 1 and if we subtract the probabilities of events which we do not require from 1, we will get the required event probability. Now, we will put the values of P(B) and P(G). So, we will get,
P (Neither blue nor green) = \[1-\dfrac{1}{3}-\dfrac{2}{7}\]
Now, we will simplify it to get the answer.
P (Neither blue nor green) \[=\dfrac{21-7-6}{21}\]
P (Neither blue nor green) = \[\dfrac{8}{21}\]
Hence, the probability of the ball which we picked up is neither blue nor green is \[\dfrac{8}{21}\].
Therefore, option (d) is the right answer.
Note: We can also find the probability of choosing neither blue nor green ball by finding the probability of choosing the red ball because the box contains only 3 colors and out of the 3, we do not want 2 colors that are blue and green. So, definitely, we want the red color ball, that is \[P\left( R \right)=\dfrac{8}{21}\]= P (Neither blue nor green).
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE