Answer
Verified
471k+ views
Hint:Put both the students in different sets according to their favourite sport and then apply the formula of a union of sets, which is given as:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step-by-step answer:
It is given in the problem that there are 35 students in the class, out of which 24 likes to play cricket, 5 likes to play both cricket and football.
We have to find the number of students who like to play football.
Assume that the set $A$ defines the students who like to play cricket.
We know that there are 24 such students who like to play cricket, then
$n\left( A \right) = 24$
Also, assume that set $B$ defines the students who like to play football, and we have to find the number of such students,$n\left( B \right)$ who like to play football.
It is given in the problem that the total number of students are $35$, then it is denoted as:
$n(A \cup B) = 35$
We also know that the number of students who like both sports cricket and football are $5$, then it is expressed as:
\[n(A \cap B) = 5\]
Applying the formula of the union of sets which is given as:
$n(A \cup B) = n(A) + n(B) - n(A \cap B)$
Substitute the value of the given data:
$35 = 24 + n(B) - 5$
$35 - 24 + 5 = n(B)$
$n(B) = 16$
Therefore, there are 16 students who like to play football.
Note:The union of two sets is again a set which contains the element which is in one of the two sets and the union of the two sets is expressed as $A \cup B$.
The intersection of two sets is again a set that contains all the elements that are in both the sets and it is expressed as $A \cap B$.
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step-by-step answer:
It is given in the problem that there are 35 students in the class, out of which 24 likes to play cricket, 5 likes to play both cricket and football.
We have to find the number of students who like to play football.
Assume that the set $A$ defines the students who like to play cricket.
We know that there are 24 such students who like to play cricket, then
$n\left( A \right) = 24$
Also, assume that set $B$ defines the students who like to play football, and we have to find the number of such students,$n\left( B \right)$ who like to play football.
It is given in the problem that the total number of students are $35$, then it is denoted as:
$n(A \cup B) = 35$
We also know that the number of students who like both sports cricket and football are $5$, then it is expressed as:
\[n(A \cap B) = 5\]
Applying the formula of the union of sets which is given as:
$n(A \cup B) = n(A) + n(B) - n(A \cap B)$
Substitute the value of the given data:
$35 = 24 + n(B) - 5$
$35 - 24 + 5 = n(B)$
$n(B) = 16$
Therefore, there are 16 students who like to play football.
Note:The union of two sets is again a set which contains the element which is in one of the two sets and the union of the two sets is expressed as $A \cup B$.
The intersection of two sets is again a set that contains all the elements that are in both the sets and it is expressed as $A \cap B$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE