In a cricket match against Pakistan, Azhar wants to bat before Jadeja and Jadeja wants to bat before Ganguli. The number of possible batting orders with the above restrictions, if the remaining eight team members are prepared to bat at any given place, is
A) $\dfrac{{11!}}{{3!}}$
B) ${}^{11}{P_3}$
C) $\dfrac{{11!}}{3}$
D) None
Answer
Verified
482.4k+ views
Hint:: We should have the concept of permutation to solve this problem. In the question, we have to find out the number of ways the players will play in order along with given restrictions. Apply the concept of permutation according to given restrictions find out the total no. of ways to arrange all players fixing the positions of $3$ players. For solving this, the factorial of total no. of players ($11$ in a cricket team) should be multiplied by the factorial of no. of players having no restriction & this should be divided by-product of the factorial of no. of players having restriction (3 here) & factorial of no. of players having no restriction (8 here).
Complete step by step solution:
The total number of players in a cricket match is $ = 11$players.
Now, given restrictions are – Azhar, Jadeja, and Ganguli.
Since it is given that Azhar will play before Jadeja and Jadeja will play before Ganguli.
According to question Azhar, Jadeja and Ganguli can play in any order\[like{\text{ }}1,2,3{\text{ }}or{\text{ }}2,3,4{\text{ }}or{\text{ }}3,4,5{\text{ }}etc\] i.e. Azhar can take any position from \[1{\text{ }}to{\text{ }}9\] but should be one after another (Azhar then Jadeja then Ganguli ) as mentioned in question.
So, their order or places are fixed.
Remaining players in team $ = (11 - 3) = 8$players.
$\Rightarrow$ So, they will arrange in $ = 8!$ways and fixed order are $ = 3$.
$\Rightarrow$ $\dfrac{{Total{\text{ }}no.{\text{ }}of{\text{ }}players!}}{{no.of{\text{ }}players{\text{ with }}restriction!{\text{ }} \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ with }}no{\text{ }}restrictions!}}$\[ \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ }}having{\text{ }}no{\text{ }}restrictions\]
$ = \dfrac{{11!}}{{3! \times 8!}} \times 8!$
On simplifying the above terms we get,
$ = \dfrac{{11!}}{{3!}}$
$\therefore$ No. of possible batting order $ = \dfrac{{11!}}{{3!}}$. Hence option (A) is the correct answer.
Note: First of all, read the question properly to understand given restrictions in the question so that you can relate the way needed to solve the sum in your mind. The above question was asked from permutation. It is a conceptual topic and required great concentration specially on the restrictions given in the question. Sometimes there is a chance of using the wrong formula for solving because the formula for this type of problem depends completely on what restriction is given regarding arrangements so a crystal-clear concept is required to solve these questions.
Complete step by step solution:
The total number of players in a cricket match is $ = 11$players.
Now, given restrictions are – Azhar, Jadeja, and Ganguli.
Since it is given that Azhar will play before Jadeja and Jadeja will play before Ganguli.
According to question Azhar, Jadeja and Ganguli can play in any order\[like{\text{ }}1,2,3{\text{ }}or{\text{ }}2,3,4{\text{ }}or{\text{ }}3,4,5{\text{ }}etc\] i.e. Azhar can take any position from \[1{\text{ }}to{\text{ }}9\] but should be one after another (Azhar then Jadeja then Ganguli ) as mentioned in question.
So, their order or places are fixed.
Remaining players in team $ = (11 - 3) = 8$players.
$\Rightarrow$ So, they will arrange in $ = 8!$ways and fixed order are $ = 3$.
$\Rightarrow$ $\dfrac{{Total{\text{ }}no.{\text{ }}of{\text{ }}players!}}{{no.of{\text{ }}players{\text{ with }}restriction!{\text{ }} \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ with }}no{\text{ }}restrictions!}}$\[ \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ }}having{\text{ }}no{\text{ }}restrictions\]
$ = \dfrac{{11!}}{{3! \times 8!}} \times 8!$
On simplifying the above terms we get,
$ = \dfrac{{11!}}{{3!}}$
$\therefore$ No. of possible batting order $ = \dfrac{{11!}}{{3!}}$. Hence option (A) is the correct answer.
Note: First of all, read the question properly to understand given restrictions in the question so that you can relate the way needed to solve the sum in your mind. The above question was asked from permutation. It is a conceptual topic and required great concentration specially on the restrictions given in the question. Sometimes there is a chance of using the wrong formula for solving because the formula for this type of problem depends completely on what restriction is given regarding arrangements so a crystal-clear concept is required to solve these questions.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE