Answer
Verified
500.1k+ views
Hint – To solve this problem we have to consider the series as an AP whose sum, first term , number of terms is given, so use the formula of AP to get the common difference and last term.
As we are considering it as an AP.
Where number of teams participated is the number of terms, which is,
n = 16 ……(i)
The last ranked team got Rs.275
So the first term,
a = 275 ……(ii)
The total money awarded is Rs.8000
Therefore the sum is,
${{\text{S}}_n} = 8000$……(iii)
We also know,
$
{{\text{S}}_n} = \dfrac{n}{2}(a + l) \\
{\text{where, }}l{\text{ = last term}} \\
$
On putting the respective values of variables in above equation we get,
$8000 = \dfrac{{16}}{2}(275 + l)$
Then we calculate the last term as,
$
l = \dfrac{{8000 \times 2}}{{16}} - 275 \\
l = 1000 - 275 \\
l = 725 \\
$
So, the last term is 725.
Hence, the winning team will be awarded Rs.725 .
Note – Whenever you get to solve these types of problems , think that, can we convert this situation into a series , it may be an AP,GP,HP etc. Then after considering it as a series solve it further to get the problem solved. Here we have considered the series as an AP and many of the terms of an AP were given. We have to find a single term by using the formula of sum of an AP. Alternatively we can also use the formula ${{\text{S}}_{\text{n}}}{\text{ = }}\frac{{\text{n}}}{{\text{2}}}{\text{(2a + (n - 1)d)}}$ then we found d then again we have to use the formula of last term as $l = a + (n - 1)d$ but the last term part is itself present in the formula of sum. So we have used it directly and got the problem solved.
As we are considering it as an AP.
Where number of teams participated is the number of terms, which is,
n = 16 ……(i)
The last ranked team got Rs.275
So the first term,
a = 275 ……(ii)
The total money awarded is Rs.8000
Therefore the sum is,
${{\text{S}}_n} = 8000$……(iii)
We also know,
$
{{\text{S}}_n} = \dfrac{n}{2}(a + l) \\
{\text{where, }}l{\text{ = last term}} \\
$
On putting the respective values of variables in above equation we get,
$8000 = \dfrac{{16}}{2}(275 + l)$
Then we calculate the last term as,
$
l = \dfrac{{8000 \times 2}}{{16}} - 275 \\
l = 1000 - 275 \\
l = 725 \\
$
So, the last term is 725.
Hence, the winning team will be awarded Rs.725 .
Note – Whenever you get to solve these types of problems , think that, can we convert this situation into a series , it may be an AP,GP,HP etc. Then after considering it as a series solve it further to get the problem solved. Here we have considered the series as an AP and many of the terms of an AP were given. We have to find a single term by using the formula of sum of an AP. Alternatively we can also use the formula ${{\text{S}}_{\text{n}}}{\text{ = }}\frac{{\text{n}}}{{\text{2}}}{\text{(2a + (n - 1)d)}}$ then we found d then again we have to use the formula of last term as $l = a + (n - 1)d$ but the last term part is itself present in the formula of sum. So we have used it directly and got the problem solved.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE