Answer
Verified
498.3k+ views
Hint: We have to see whether the triangle is of which type. So use ${{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE