
In a $\Delta ABC$, right angled at B, the in –radius is:
A. $\dfrac{AB+BC-AC}{2}$
B. $\dfrac{AB+AC-BC}{2}$
C. $\dfrac{AB+BC+AC}{2}$
D. None
Answer
573.6k+ views
Hint: The radius of a triangle is equal to $\dfrac{\Delta }{s}$. Where $'\Delta '$ is the area of the triangle and ‘s’ is the semi- perimeter of the triangle. We can find the area by taking the product of base and height and then dividing it by 2. We can find the semi-perimeter by adding up all the side lengths and then dividing it by 2. Find $'\Delta '$ and ‘s’ of triangles and put in the formula to get the inradius.
Complete step-by-step answer:
Given triangle ABC is right angled at B.
\[\begin{align}
& Area\ of\ a\ triangle\ is\ =\dfrac{1}{2}\times \left( base \right)\times \left( height \right) \\
& \Rightarrow \Delta =\dfrac{1}{2}\times \left( AB \right)\times \left( BC \right) \\
& Semiperimeter\ of\ \Delta ABC=\dfrac{Perimeter\ of\ \Delta ABC}{2} \\
& \Rightarrow s=\dfrac{AB+BC+AC}{2} \\
& \Rightarrow s=\dfrac{a+b+c}{2}.......\left( 1 \right) \\
\end{align}\]
Now, let us put calculated values of $'\Delta '$ and ‘s’ in the formula of inradius;
$\begin{align}
& r=\dfrac{\Delta }{s} \\
& \Rightarrow r=\dfrac{\left( \dfrac{1}{2}\times AB\times BC \right)}{\left( \dfrac{AB+BC+CA}{2} \right)} \\
\end{align}$
Multiplying both numerator and denominator by 2, we will get,
$\Rightarrow r=\dfrac{AB\times BC}{AB+BC+AC}$
Putting AB = c, BC = a and AC = b, we will get;
$\begin{align}
& \Rightarrow r=\dfrac{c\times a}{c+a+b} \\
& \Rightarrow r=\dfrac{ac}{a+b+c}...........\left( 2 \right) \\
\end{align}$
Subtracting equation (1) from equation (2), we will get,
$\Rightarrow r-s=\dfrac{ac}{a+b+c}-\dfrac{a+b+c}{2}$
Taking LCM and subtracting, we will get,
$\Rightarrow r-s=\dfrac{2ac-{{\left( a+b+c \right)}^{2}}}{2\left( a+b+c \right)}$
We know ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
Using these identity, we will get,
$\begin{align}
& \Rightarrow r-s=\dfrac{2ac-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \right)}{2\left( a+b+c \right)} \\
& \Rightarrow r-s=\dfrac{{2ac}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}}-2ab-2bc-{2ca}}{2\left( a+b+c \right)} \\
\end{align}$
Taking “-1” common, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
As $\Delta ABC$ is right angled at B,
$\begin{align}
& {{\left( hypotenuse \right)}^{2}}={{\left( side\ 1 \right)}^{2}}+{{\left( side\ 2 \right)}^{2}} \\
& \Rightarrow {{b}^{2}}={{a}^{2}}+{{c}^{2}} \\
\end{align}$
By replacing ${{a}^{2}}+{{c}^{2}}$with ${{b}^{2}}$, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{b}^{2}}+{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
Multiplying both sides of equation by “-1”, we will get,
$\begin{align}
& \Rightarrow -1\times \left( r-s \right)=\left( -1 \right)\times \left[ \dfrac{-\left( 2{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)} \right] \\
& \Rightarrow s-r=\dfrac{2{{b}^{2}}+2ab+2bc}{2\left( a+b+c \right)} \\
\end{align}$
Taking “2b” common from the numerator in RHS, we will get,
\[\Rightarrow s-r=\dfrac{2b\left( b+a+c \right)}{2\left( a+b+c \right)}\]
Dividing both numerator and denominator by 2(a + b + c), we will get,
$\begin{align}
& \Rightarrow s-r=b \\
& \Rightarrow r=s-b \\
\end{align}$
Putting $s=\dfrac{a+b+c}{2}$, we will get,
$r=\left( \dfrac{a+b+c}{2} \right)-\dfrac{b}{1}$
Taking LCM and subtracting, we will get,
$\begin{align}
& r=\dfrac{a+b+c-2b}{2} \\
& \Rightarrow r=\dfrac{a-b+c}{2} \\
\end{align}$
Now, putting a = BC, b = AC, c = AB, we will get,
$\begin{align}
& \Rightarrow r=\dfrac{BC-AC+AB}{2} \\
& \Rightarrow r=\dfrac{AB+BC-AC}{2} \\
\end{align}$
Hence, the inradius of $\Delta ABC$ is equal to $\dfrac{AB+BC-AC}{2}$ and option (A) is the correct answer.
Note: inradius of a triangle is the radius of the circle inscribed in the triangle. If you don’t remember the formula for inradius. Calculate inradius using geometry. But this will be a very lengthy method, so try to memorize the formula.
Complete step-by-step answer:
Given triangle ABC is right angled at B.
\[\begin{align}
& Area\ of\ a\ triangle\ is\ =\dfrac{1}{2}\times \left( base \right)\times \left( height \right) \\
& \Rightarrow \Delta =\dfrac{1}{2}\times \left( AB \right)\times \left( BC \right) \\
& Semiperimeter\ of\ \Delta ABC=\dfrac{Perimeter\ of\ \Delta ABC}{2} \\
& \Rightarrow s=\dfrac{AB+BC+AC}{2} \\
& \Rightarrow s=\dfrac{a+b+c}{2}.......\left( 1 \right) \\
\end{align}\]
Now, let us put calculated values of $'\Delta '$ and ‘s’ in the formula of inradius;
$\begin{align}
& r=\dfrac{\Delta }{s} \\
& \Rightarrow r=\dfrac{\left( \dfrac{1}{2}\times AB\times BC \right)}{\left( \dfrac{AB+BC+CA}{2} \right)} \\
\end{align}$
Multiplying both numerator and denominator by 2, we will get,
$\Rightarrow r=\dfrac{AB\times BC}{AB+BC+AC}$
Putting AB = c, BC = a and AC = b, we will get;
$\begin{align}
& \Rightarrow r=\dfrac{c\times a}{c+a+b} \\
& \Rightarrow r=\dfrac{ac}{a+b+c}...........\left( 2 \right) \\
\end{align}$
Subtracting equation (1) from equation (2), we will get,
$\Rightarrow r-s=\dfrac{ac}{a+b+c}-\dfrac{a+b+c}{2}$
Taking LCM and subtracting, we will get,
$\Rightarrow r-s=\dfrac{2ac-{{\left( a+b+c \right)}^{2}}}{2\left( a+b+c \right)}$
We know ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
Using these identity, we will get,
$\begin{align}
& \Rightarrow r-s=\dfrac{2ac-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \right)}{2\left( a+b+c \right)} \\
& \Rightarrow r-s=\dfrac{{2ac}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}}-2ab-2bc-{2ca}}{2\left( a+b+c \right)} \\
\end{align}$
Taking “-1” common, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
As $\Delta ABC$ is right angled at B,
$\begin{align}
& {{\left( hypotenuse \right)}^{2}}={{\left( side\ 1 \right)}^{2}}+{{\left( side\ 2 \right)}^{2}} \\
& \Rightarrow {{b}^{2}}={{a}^{2}}+{{c}^{2}} \\
\end{align}$
By replacing ${{a}^{2}}+{{c}^{2}}$with ${{b}^{2}}$, we will get,
$\Rightarrow r-s=\dfrac{-\left( {{b}^{2}}+{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)}$
Multiplying both sides of equation by “-1”, we will get,
$\begin{align}
& \Rightarrow -1\times \left( r-s \right)=\left( -1 \right)\times \left[ \dfrac{-\left( 2{{b}^{2}}+2ab+2bc \right)}{2\left( a+b+c \right)} \right] \\
& \Rightarrow s-r=\dfrac{2{{b}^{2}}+2ab+2bc}{2\left( a+b+c \right)} \\
\end{align}$
Taking “2b” common from the numerator in RHS, we will get,
\[\Rightarrow s-r=\dfrac{2b\left( b+a+c \right)}{2\left( a+b+c \right)}\]
Dividing both numerator and denominator by 2(a + b + c), we will get,
$\begin{align}
& \Rightarrow s-r=b \\
& \Rightarrow r=s-b \\
\end{align}$
Putting $s=\dfrac{a+b+c}{2}$, we will get,
$r=\left( \dfrac{a+b+c}{2} \right)-\dfrac{b}{1}$
Taking LCM and subtracting, we will get,
$\begin{align}
& r=\dfrac{a+b+c-2b}{2} \\
& \Rightarrow r=\dfrac{a-b+c}{2} \\
\end{align}$
Now, putting a = BC, b = AC, c = AB, we will get,
$\begin{align}
& \Rightarrow r=\dfrac{BC-AC+AB}{2} \\
& \Rightarrow r=\dfrac{AB+BC-AC}{2} \\
\end{align}$
Hence, the inradius of $\Delta ABC$ is equal to $\dfrac{AB+BC-AC}{2}$ and option (A) is the correct answer.
Note: inradius of a triangle is the radius of the circle inscribed in the triangle. If you don’t remember the formula for inradius. Calculate inradius using geometry. But this will be a very lengthy method, so try to memorize the formula.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

