Answer
Verified
496.8k+ views
Hint: Calculate the probability of each of the events of manufacturing a bolt from the three machines and manufacturing a default bolt. Use conditional probability to calculate the probability of getting a defective bolt. Use the fact that the sum of probability of occurrence of an event and non occurrence of an event is 1.
Complete step by step answer:
We have data regarding the contribution of machines for manufacturing of bolts and the number of defective bolts manufactured. We have to calculate the probability of not getting a defective bolt from machine B given that it’s a defective bolt.
Let us denote the event of producing a bolt by machine A, B and C by A, B and C respectively. Let us denote the event of getting a defective bolt from machine A, B and C by X, Y and Z respectively. Let us denote the event of getting a defective by O.
We will calculate the probability of event O.
We will firstly evaluate the probability of each of the events.
We know that probability of any event is the ratio of number of favourable outcomes to total number of possible outcomes.
We know that the formula for conditional probability of occurrence of an event A given B has already occurred is given by \[P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}\].
Let’s assume that 100 bolts were manufactured by all the machines on a particular day.
We know that \[x%\] of \[y\] has the value \[\dfrac{xy}{100}\].
Thus, the number of bolts manufactured by machine A \[=\dfrac{30}{100}\left( 100 \right)=30\].
So, the probability of getting a bolt manufactured by machine A is \[P\left( A \right)=\dfrac{30}{100}=0.3\].
The number of bolts manufactured by machine B \[=\dfrac{50}{100}\left( 100 \right)=50\].
So, the probability of getting a bolt manufactured by machine B is \[P\left( B \right)=\dfrac{50}{100}=0.5\].
The number of bolts manufactured by machine C \[=\dfrac{20}{100}\left( 100 \right)=20\].
So, the probability of getting a bolt manufactured by machine C is \[P\left( C \right)=\dfrac{20}{100}=0.2\].
We will now count the number of defective bolts produced by each machine.
We know that machine A produces \[3%\] defective bolts out of the total number of bolts produced by machine A.
So, the number of defective bolts produced by machine A \[=\dfrac{3}{100}\left( 30 \right)=0.9\].
Probability of producing a defective bolt by machine A \[=P\left( X|A \right)=\dfrac{0.9}{30}=0.03\].
We know that machine B produces \[4%\] defective bolts out of the total number of bolts produced by machine B.
So, the number of defective bolts produced by machine B \[=\dfrac{4}{100}\left( 50 \right)=2\].
Probability of producing a defective bolt by machine B \[=P\left( Y|B \right)=\dfrac{2}{50}=0.04\].
We know that machine C produces \[1%\] defective bolts out of the total number of bolts produced by machine C.
So, the number of defective bolts produced by machine C \[=\dfrac{1}{100}\left( 20 \right)=0.2\].
Probability of producing a defective bolt by machine C \[=P\left( Z|C \right)=\dfrac{0.2}{20}=0.01\].
We will now calculate the probability of getting a defective bolt. A defective bolt can come from any three of the machines.
Thus, the probability of getting a defective bolt \[=P\left( O \right)=P\left( X|A \right)P\left( A \right)+P\left( Y|B \right)P\left( B \right)+P\left( Z|C \right)P\left( C \right)\].
Thus, we have \[P\left( O \right)=0.03\times 0.3+0.04\times 0.5+0.01\times 0.2=0.031\].
We will now calculate the probability of manufacturing a bolt from machine B, given that it’s a defected bolt, i.e., \[P\left( B|O \right)\].
We can rewrite this as \[P\left( B|O \right)=\dfrac{P\left( O|B \right)P\left( B \right)}{P\left( O \right)}\].
We know that \[P\left( B \right)=0.5,P\left( O \right)=0.031\].
We will calculate the value of \[P\left( O|B \right)\], which is the probability of getting a defective bolt given that machine B is manufacturing the bolts. We observe that \[P\left( O|B \right)=P\left( Y\cap B \right)=P\left( Y|B \right)P\left( B \right)\].
Thus, we have \[P\left( O|B \right)=P\left( Y\cap B \right)=P\left( Y|B \right)P\left( B \right)=0.04\times 0.5=0.02\].
So, we have \[P\left( B|O \right)=\dfrac{P\left( O|B \right)P\left( B \right)}{P\left( O \right)}=\dfrac{0.02\times 0.5}{0.031}=0.322\].
We have to evaluate the probability of not manufacturing a bolt from machine B, given that it is a defective bolt, i.e., \[P\left( {{B}^{c}}|O \right)=1-P\left( B|O \right)\].
Thus, we have \[P\left( {{B}^{c}}|O \right)=1-P\left( B|O \right)=1-0.322=0.678\].
Hence, the probability of getting a defective bolt not manufactured by machine B is 0.678.
Note: We can also solve this question by assuming that the factory manufactures x bolts in a day and then calculate the probability of each of the events. It won’t affect the value of probability as probability simply represents a ratio. One must clearly know the definition of conditional probability, which is the occurrence of an event A given that event b has already occurred.
Complete step by step answer:
We have data regarding the contribution of machines for manufacturing of bolts and the number of defective bolts manufactured. We have to calculate the probability of not getting a defective bolt from machine B given that it’s a defective bolt.
Let us denote the event of producing a bolt by machine A, B and C by A, B and C respectively. Let us denote the event of getting a defective bolt from machine A, B and C by X, Y and Z respectively. Let us denote the event of getting a defective by O.
We will calculate the probability of event O.
We will firstly evaluate the probability of each of the events.
We know that probability of any event is the ratio of number of favourable outcomes to total number of possible outcomes.
We know that the formula for conditional probability of occurrence of an event A given B has already occurred is given by \[P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}\].
Let’s assume that 100 bolts were manufactured by all the machines on a particular day.
We know that \[x%\] of \[y\] has the value \[\dfrac{xy}{100}\].
Thus, the number of bolts manufactured by machine A \[=\dfrac{30}{100}\left( 100 \right)=30\].
So, the probability of getting a bolt manufactured by machine A is \[P\left( A \right)=\dfrac{30}{100}=0.3\].
The number of bolts manufactured by machine B \[=\dfrac{50}{100}\left( 100 \right)=50\].
So, the probability of getting a bolt manufactured by machine B is \[P\left( B \right)=\dfrac{50}{100}=0.5\].
The number of bolts manufactured by machine C \[=\dfrac{20}{100}\left( 100 \right)=20\].
So, the probability of getting a bolt manufactured by machine C is \[P\left( C \right)=\dfrac{20}{100}=0.2\].
We will now count the number of defective bolts produced by each machine.
We know that machine A produces \[3%\] defective bolts out of the total number of bolts produced by machine A.
So, the number of defective bolts produced by machine A \[=\dfrac{3}{100}\left( 30 \right)=0.9\].
Probability of producing a defective bolt by machine A \[=P\left( X|A \right)=\dfrac{0.9}{30}=0.03\].
We know that machine B produces \[4%\] defective bolts out of the total number of bolts produced by machine B.
So, the number of defective bolts produced by machine B \[=\dfrac{4}{100}\left( 50 \right)=2\].
Probability of producing a defective bolt by machine B \[=P\left( Y|B \right)=\dfrac{2}{50}=0.04\].
We know that machine C produces \[1%\] defective bolts out of the total number of bolts produced by machine C.
So, the number of defective bolts produced by machine C \[=\dfrac{1}{100}\left( 20 \right)=0.2\].
Probability of producing a defective bolt by machine C \[=P\left( Z|C \right)=\dfrac{0.2}{20}=0.01\].
We will now calculate the probability of getting a defective bolt. A defective bolt can come from any three of the machines.
Thus, the probability of getting a defective bolt \[=P\left( O \right)=P\left( X|A \right)P\left( A \right)+P\left( Y|B \right)P\left( B \right)+P\left( Z|C \right)P\left( C \right)\].
Thus, we have \[P\left( O \right)=0.03\times 0.3+0.04\times 0.5+0.01\times 0.2=0.031\].
We will now calculate the probability of manufacturing a bolt from machine B, given that it’s a defected bolt, i.e., \[P\left( B|O \right)\].
We can rewrite this as \[P\left( B|O \right)=\dfrac{P\left( O|B \right)P\left( B \right)}{P\left( O \right)}\].
We know that \[P\left( B \right)=0.5,P\left( O \right)=0.031\].
We will calculate the value of \[P\left( O|B \right)\], which is the probability of getting a defective bolt given that machine B is manufacturing the bolts. We observe that \[P\left( O|B \right)=P\left( Y\cap B \right)=P\left( Y|B \right)P\left( B \right)\].
Thus, we have \[P\left( O|B \right)=P\left( Y\cap B \right)=P\left( Y|B \right)P\left( B \right)=0.04\times 0.5=0.02\].
So, we have \[P\left( B|O \right)=\dfrac{P\left( O|B \right)P\left( B \right)}{P\left( O \right)}=\dfrac{0.02\times 0.5}{0.031}=0.322\].
We have to evaluate the probability of not manufacturing a bolt from machine B, given that it is a defective bolt, i.e., \[P\left( {{B}^{c}}|O \right)=1-P\left( B|O \right)\].
Thus, we have \[P\left( {{B}^{c}}|O \right)=1-P\left( B|O \right)=1-0.322=0.678\].
Hence, the probability of getting a defective bolt not manufactured by machine B is 0.678.
Note: We can also solve this question by assuming that the factory manufactures x bolts in a day and then calculate the probability of each of the events. It won’t affect the value of probability as probability simply represents a ratio. One must clearly know the definition of conditional probability, which is the occurrence of an event A given that event b has already occurred.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE