Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

In a given figure equilateral triangles are drawn on the sides of a right triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.
seo images

Answer
VerifiedVerified
523.2k+ views
like imagedislike image
Hint: In this question it is given that 3 equilateral triangles are drawn on sides of the right triangle. Use theorem; ratio of areas of similar triangles is proportional to the square of ratio of their corresponding sides.

Complete step-by-step answer:

Given PAB,RAC and BQC are equilateral triangles.
To Prove: Ar(PAB)+Ar(QBC)=Ar(RAC)
Proof:
Since
PAB,RAC and BQC are equilateral HencePABRAC and BQCRAC [they are equiangular]
From
PABRACAr(PAB)Ar(RAC)=(ABAC)2............................(1)
From
BQCRACAr(BQC)Ar(RAC)=(BCAC)2..............................(2)
Adding (1) and (2) we get,
Ar(PAB)Ar(RAC)+Ar(BQC)Ar(RAC)=AB2AC2+BC2AC2Ar(PAB)+Ar(BQC)Ar(RAC)=AB2+BC2AC2Using pythagoras theorem to right ABCAC2=AB2+BC2Ar(PAB)+Ar(BQC)Ar(RAC)=AC2AC2=1Ar(PAB)+Ar(BQC)=Ar(RAC)
Hence Proved.

Note: An equilateral triangle is a triangle in which all three sides are equal. Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion. In other words, similar triangles are the same shape, but not necessarily the same size. Students must remember the criterions for the similarity of triangles