Answer
Verified
459.3k+ views
Hint: We can solve this problem by using a general substitution method and also using the Venn diagram method. Given in the problem is the information about a number of people speaking two languages in a given number of groups of people. We have to find a number of people for the required result by using probability relations. Then, using the formula and given information we can find the number of students who can speak both and then the number of people who can speak only Hindi.
Formula used: We will apply the formula of \[n(H \cap E) = n(H) + n(E) - n(H \cup E)\].
Here.
\[H\] means number of students who can speak Hindi and
\[E\] means the number of students who can speak English.
Complete step-by-step answer:
It is given that; total number of people is \[1000\].
Number of people who can speak Hindi is \[750\].
Number of people who can speak English is \[400\].
We have to find the number of people who can speak Hindi only.
So, as per the given information
\[n(H \cup E) = 1000\]
\[n(H) = 750\]
\[n(E) = 400\]
Let us consider the number of students who can speak Hindi and English is \[x\] that is \[n(H \cap E) = x\].
First, we have to find the value of \[n(H \cap E)\].
We know that,
\[n(H \cap E) = n(H) + n(E) - n(H \cup E)\]
Substitute the values in the above formula we get,
$\Rightarrow$\[n(H \cap E) = 750 + 400 - 1000\]
Simplifying we get,
$\Rightarrow$\[n(H \cap E) = 150\]
So, the number of people who can speak Hindi only is \[n(H) - n(H \cap E)\].
Substitute the values we get,
The number of people who can speak Hindi only is \[750 - 150 = 600\].
Hence, the number of people who can speak Hindi only is \[600\]
$\therefore $ The correct answer is option C.
Note: We can solve the sum by using a Venn diagram.
Here, the red shaded part indicates the number of people who can speak Hindi is \[750\].
The blue shaded part indicates the number of people who can speak English is \[400\].
The green shaded part indicates the number of people who can speak both Hindi and English.
The total number of people is \[1000\].
We have to find the value of the green shaded part.
So, the value of green shaded part is
\[750 + 400 - 1000 = 150\]
The number of people who can speak Hindi only is \[750 - 150 = 600\].
Formula used: We will apply the formula of \[n(H \cap E) = n(H) + n(E) - n(H \cup E)\].
Here.
\[H\] means number of students who can speak Hindi and
\[E\] means the number of students who can speak English.
Complete step-by-step answer:
It is given that; total number of people is \[1000\].
Number of people who can speak Hindi is \[750\].
Number of people who can speak English is \[400\].
We have to find the number of people who can speak Hindi only.
So, as per the given information
\[n(H \cup E) = 1000\]
\[n(H) = 750\]
\[n(E) = 400\]
Let us consider the number of students who can speak Hindi and English is \[x\] that is \[n(H \cap E) = x\].
First, we have to find the value of \[n(H \cap E)\].
We know that,
\[n(H \cap E) = n(H) + n(E) - n(H \cup E)\]
Substitute the values in the above formula we get,
$\Rightarrow$\[n(H \cap E) = 750 + 400 - 1000\]
Simplifying we get,
$\Rightarrow$\[n(H \cap E) = 150\]
So, the number of people who can speak Hindi only is \[n(H) - n(H \cap E)\].
Substitute the values we get,
The number of people who can speak Hindi only is \[750 - 150 = 600\].
Hence, the number of people who can speak Hindi only is \[600\]
$\therefore $ The correct answer is option C.
Note: We can solve the sum by using a Venn diagram.
Here, the red shaded part indicates the number of people who can speak Hindi is \[750\].
The blue shaded part indicates the number of people who can speak English is \[400\].
The green shaded part indicates the number of people who can speak both Hindi and English.
The total number of people is \[1000\].
We have to find the value of the green shaded part.
So, the value of green shaded part is
\[750 + 400 - 1000 = 150\]
The number of people who can speak Hindi only is \[750 - 150 = 600\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers