Answer
Verified
459k+ views
Hint: The Kundt’s tube experiment is the acoustic experiment which describes the longitudinal wave pattern in the sound waves. The separation of piles formed by the given sample is a direct indicator of the characteristics of the sound wave used. The speed of sound in air is 340\[m{{s}^{-1}}\].
Formula Used:
The basic formula used in a Kundt’s experiment is –
\[c=\lambda \nu \]
Where, c is the speed of sound in vacuum or air
\[\lambda \] is the wavelength of the sound
\[\nu \] is the frequency of the sound
Complete answer:
The Kundt’s tube experiment consists of a transparent horizontal tube with a small amount of the given sample, here it is the lycopodium. The one end of the tube has a single signal generator which can produce a sound wave of single frequency \[\nu \]. The other end of the tube is attached with a movable piston which can oscillate along with the incoming sound wave and thus contributes to the length of the tube. The piston is set up such that the sound produced by the generator doesn’t disturb its equilibrium position at lower amplitudes. This means that the length of the tube along with the piston is a multiple of the wavelength of the generated sound.
The given figures give the amplitude variation at two instincts.
It is clear that the piston will be at equilibrium if \[L=n\lambda \].
Also, we know from the experiment that the powder used has a tendency to pile at distance half of the wavelengths.
Now using this idea and given data, we can find the frequency of the sound used.
\[\begin{align}
& \text{Given}, \\
& \text{ }\delta =20cm \\
& \text{Also}, \\
& \text{ }\dfrac{\lambda }{2}=\delta \\
& \Rightarrow \dfrac{\lambda }{2}=20cm \\
& \Rightarrow \lambda =40cm\text{ --------(1)} \\
\end{align}\]
Now, using the basic formula relating speed, wavelength and frequency we can find the frequency of the sound.
\[\begin{align}
& c=\lambda \nu \text{ -------(2)} \\
& \text{From (1),} \\
& \lambda =40cm=0.4m \\
& \text{Also,} \\
& c=340m{{s}^{-1}} \\
& \Rightarrow \text{From (2),} \\
& \text{ }\nu =\dfrac{c}{\lambda } \\
& \Rightarrow \nu =\dfrac{340}{0.4} \\
& \Rightarrow \nu =850Hz \\
\end{align}\]
The frequency with which the experiment was conducted is 850Hz.
Option B is the suitable answer.
Note:
In an experiment, the unknown we usually find is the wavelength of the generated sound wave. We find it similarly by measuring the distance between the piles of the lycopodium powder and applying the basic formula relating wavelength, frequency and speed of sound in the medium.
The experiment is also a proof for the longitudinal nature of the sound waves.
Formula Used:
The basic formula used in a Kundt’s experiment is –
\[c=\lambda \nu \]
Where, c is the speed of sound in vacuum or air
\[\lambda \] is the wavelength of the sound
\[\nu \] is the frequency of the sound
Complete answer:
The Kundt’s tube experiment consists of a transparent horizontal tube with a small amount of the given sample, here it is the lycopodium. The one end of the tube has a single signal generator which can produce a sound wave of single frequency \[\nu \]. The other end of the tube is attached with a movable piston which can oscillate along with the incoming sound wave and thus contributes to the length of the tube. The piston is set up such that the sound produced by the generator doesn’t disturb its equilibrium position at lower amplitudes. This means that the length of the tube along with the piston is a multiple of the wavelength of the generated sound.
The given figures give the amplitude variation at two instincts.
It is clear that the piston will be at equilibrium if \[L=n\lambda \].
Also, we know from the experiment that the powder used has a tendency to pile at distance half of the wavelengths.
Now using this idea and given data, we can find the frequency of the sound used.
\[\begin{align}
& \text{Given}, \\
& \text{ }\delta =20cm \\
& \text{Also}, \\
& \text{ }\dfrac{\lambda }{2}=\delta \\
& \Rightarrow \dfrac{\lambda }{2}=20cm \\
& \Rightarrow \lambda =40cm\text{ --------(1)} \\
\end{align}\]
Now, using the basic formula relating speed, wavelength and frequency we can find the frequency of the sound.
\[\begin{align}
& c=\lambda \nu \text{ -------(2)} \\
& \text{From (1),} \\
& \lambda =40cm=0.4m \\
& \text{Also,} \\
& c=340m{{s}^{-1}} \\
& \Rightarrow \text{From (2),} \\
& \text{ }\nu =\dfrac{c}{\lambda } \\
& \Rightarrow \nu =\dfrac{340}{0.4} \\
& \Rightarrow \nu =850Hz \\
\end{align}\]
The frequency with which the experiment was conducted is 850Hz.
Option B is the suitable answer.
Note:
In an experiment, the unknown we usually find is the wavelength of the generated sound wave. We find it similarly by measuring the distance between the piles of the lycopodium powder and applying the basic formula relating wavelength, frequency and speed of sound in the medium.
The experiment is also a proof for the longitudinal nature of the sound waves.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers