Answer
Verified
460.5k+ views
Hint: In this question we have to find the value of probability that one of the horse wins the race. For that, we are going to solve use the probability formula. And also we are going to calculate the probability using the given ratios that are given in a complete step-by-step solution.
Formulas used:
\[{\rm{P(A \, or \, B) = P(A) + P(B)}}\]
Complete step by step answer:
It is given that Odds in favor of four horses \[{\rm{A, B, C, D}}\] are \[{\rm{1 : 3, 1 : 4, 1 : 5, 1 : 6}}\].
Here the odds are nothing but the ratio of their winning probabilities,
That is nothing but the odds in favor of horse A is \[\dfrac{{P(A)}}{{P(\overline A )}} = \dfrac{1}{3}\]
Also we know that \[P(\overline A ) = 1 - P(A)\]
Substituting in the above equation we get, \[\dfrac{{P(A)}}{{P(\overline A )}} = \dfrac{{P(A)}}{{1 - P(A)}} = \dfrac{1}{3}\]
Which on solving we get, \[3P(A) = 1 - P(A)\]
\[ \Rightarrow 4P(A) = 1\]
Which in turn implies\[P(A) = \dfrac{1}{4}\].
That is the probability of winning the horse \[{\rm{A, P(A) = }}\dfrac{{\rm{1}}}{{\rm{4}}}\]
The odds in favor of horse B is \[\dfrac{{P(B)}}{{P(\overline B )}} = \dfrac{1}{4}\]
Also we know that \[P(\overline B ) = 1 - P(B)\]
Substituting in the above equation we get, \[\dfrac{{P(B)}}{{P(\overline B )}} = \dfrac{{P(B)}}{{1 - P(B)}} = \dfrac{1}{4}\]
Which on solving we get, \[4P(B) = 1 - P(B)\]
\[ \Rightarrow 5P(B) = 1\]
Which in turn implies \[P(B) = \dfrac{1}{5}\].
The probability of winning the horse \[{\rm{B, P}}\left( {\rm{B}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{5}}}\]
The odds in favor of horse C is \[\dfrac{{P(C)}}{{P(\overline C )}} = \dfrac{1}{5}\]
Also we know that \[P(\overline C ) = 1 - P(C)\]
Substituting in the above equation we get, \[\dfrac{{P(C)}}{{P(\overline C )}} = \dfrac{{P(C)}}{{1 - P(C)}} = \dfrac{1}{5}\]
Which on solving we get, \[5P(C) = 1 - P(C)\]
\[ \Rightarrow 6P(C) = 1\]
Which in turn implies\[P(C) = \dfrac{1}{6}\].
The probability of winning the horse \[{\rm{C, P}}\left( {\rm{C}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{6}}}\]
The odds in favor of horse D is \[\dfrac{{P(D)}}{{P(\overline D )}} = \dfrac{1}{6}\]
Also we know that \[P(\overline D ) = 1 - P(D)\]
Substituting in the above equation we get, \[\dfrac{{P(D)}}{{P(\overline D )}} = \dfrac{{P(D)}}{{1 - P(D)}} = \dfrac{1}{6}\]
Which on solving we get, \[6P(D) = 1 - P(D)\]
\[ \Rightarrow 7P(D) = 1\]
Which in turn implies \[P(D) = \dfrac{1}{7}\].
The probability of winning the horse \[{\rm{D, P}}\left( {\rm{D}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{7}}}\]
The probability that one of the horse winning the race \[{\rm{ = }}\left( {{\rm{P}}\left( {\rm{A}} \right){\rm{ + P}}\left( {\rm{B}} \right){\rm{ + P}}\left( {\rm{C}} \right){\rm{ + P}}\left( {\rm{D}} \right)} \right)\]
Let us now substitute the known values we get,
The probability of the one of the horse winning \[ = \left( {\dfrac{1}{4} + \dfrac{1}{5} + \dfrac{1}{6} + \dfrac{1}{7}} \right)\]
On solving the addition we get,
The probability of the one of the horse winning \[ = \dfrac{{\left( {210 + 168 + 140 + 120} \right)}}{{840}}\].
$\therefore$ The probability of the one of the horse winning \[ = \dfrac{{319}}{{420}}\].
Note:
The odds in favor of horse in ratio form which means the division of probability of success by the probability of failure that is \[\dfrac{{P(A)}}{{P(\overline A )}}\] where the numerator is the probability of success and the denominator is the probability of failure. We should be careful with the odds of any events.
Formulas used:
\[{\rm{P(A \, or \, B) = P(A) + P(B)}}\]
Complete step by step answer:
It is given that Odds in favor of four horses \[{\rm{A, B, C, D}}\] are \[{\rm{1 : 3, 1 : 4, 1 : 5, 1 : 6}}\].
Here the odds are nothing but the ratio of their winning probabilities,
That is nothing but the odds in favor of horse A is \[\dfrac{{P(A)}}{{P(\overline A )}} = \dfrac{1}{3}\]
Also we know that \[P(\overline A ) = 1 - P(A)\]
Substituting in the above equation we get, \[\dfrac{{P(A)}}{{P(\overline A )}} = \dfrac{{P(A)}}{{1 - P(A)}} = \dfrac{1}{3}\]
Which on solving we get, \[3P(A) = 1 - P(A)\]
\[ \Rightarrow 4P(A) = 1\]
Which in turn implies\[P(A) = \dfrac{1}{4}\].
That is the probability of winning the horse \[{\rm{A, P(A) = }}\dfrac{{\rm{1}}}{{\rm{4}}}\]
The odds in favor of horse B is \[\dfrac{{P(B)}}{{P(\overline B )}} = \dfrac{1}{4}\]
Also we know that \[P(\overline B ) = 1 - P(B)\]
Substituting in the above equation we get, \[\dfrac{{P(B)}}{{P(\overline B )}} = \dfrac{{P(B)}}{{1 - P(B)}} = \dfrac{1}{4}\]
Which on solving we get, \[4P(B) = 1 - P(B)\]
\[ \Rightarrow 5P(B) = 1\]
Which in turn implies \[P(B) = \dfrac{1}{5}\].
The probability of winning the horse \[{\rm{B, P}}\left( {\rm{B}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{5}}}\]
The odds in favor of horse C is \[\dfrac{{P(C)}}{{P(\overline C )}} = \dfrac{1}{5}\]
Also we know that \[P(\overline C ) = 1 - P(C)\]
Substituting in the above equation we get, \[\dfrac{{P(C)}}{{P(\overline C )}} = \dfrac{{P(C)}}{{1 - P(C)}} = \dfrac{1}{5}\]
Which on solving we get, \[5P(C) = 1 - P(C)\]
\[ \Rightarrow 6P(C) = 1\]
Which in turn implies\[P(C) = \dfrac{1}{6}\].
The probability of winning the horse \[{\rm{C, P}}\left( {\rm{C}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{6}}}\]
The odds in favor of horse D is \[\dfrac{{P(D)}}{{P(\overline D )}} = \dfrac{1}{6}\]
Also we know that \[P(\overline D ) = 1 - P(D)\]
Substituting in the above equation we get, \[\dfrac{{P(D)}}{{P(\overline D )}} = \dfrac{{P(D)}}{{1 - P(D)}} = \dfrac{1}{6}\]
Which on solving we get, \[6P(D) = 1 - P(D)\]
\[ \Rightarrow 7P(D) = 1\]
Which in turn implies \[P(D) = \dfrac{1}{7}\].
The probability of winning the horse \[{\rm{D, P}}\left( {\rm{D}} \right){\rm{ = }}\dfrac{{\rm{1}}}{{\rm{7}}}\]
The probability that one of the horse winning the race \[{\rm{ = }}\left( {{\rm{P}}\left( {\rm{A}} \right){\rm{ + P}}\left( {\rm{B}} \right){\rm{ + P}}\left( {\rm{C}} \right){\rm{ + P}}\left( {\rm{D}} \right)} \right)\]
Let us now substitute the known values we get,
The probability of the one of the horse winning \[ = \left( {\dfrac{1}{4} + \dfrac{1}{5} + \dfrac{1}{6} + \dfrac{1}{7}} \right)\]
On solving the addition we get,
The probability of the one of the horse winning \[ = \dfrac{{\left( {210 + 168 + 140 + 120} \right)}}{{840}}\].
$\therefore$ The probability of the one of the horse winning \[ = \dfrac{{319}}{{420}}\].
Note:
The odds in favor of horse in ratio form which means the division of probability of success by the probability of failure that is \[\dfrac{{P(A)}}{{P(\overline A )}}\] where the numerator is the probability of success and the denominator is the probability of failure. We should be careful with the odds of any events.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE