
In a resonance tube experiment two consecutive resonances are observed when the length of the air columns are $16\,cm\,and\,49\,cm$ . If the frequency of the tuning fork used is $500\,Hz$ , the velocity of sound in air is:
A. $310\,m{s^{ - 1}}$
B. $320\,m{s^{ - 1}}$
C. $330\,m{s^{ - 1}}$
D. $340\,m{s^{ - 1}}$
Answer
420k+ views
Hint:In order to this question, to know the velocity of sound in the air, we should apply the formula of resonance with both the given lengths of air columns separately. Now, we can calculate the velocity of sound in air.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
