Answer
Verified
444k+ views
Hint: In this question we are given a total 16 players out of which 4 are bowlers and 2 are wicket keepers. We need to find the number of ways to form a team of 11 players having 3 bowlers and 1 wicket keeper. For this, we will first find non-bowlers, non-wicket keeper players. Then we will find ways of choosing 3 bowlers out of 4, then 1 wicket keeper out of 2 and at last 7 non-bowler, non-wicket keeper players out of the remaining. We will use a combination method here. Number of ways of selecting r items out of n is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Complete step-by-step solution:
Here we are given the total players as 16. Number of bowlers are 4 and number of wicket keepers are 2. Remaining players (non-bowler, non-wicket keeper) will be 16 - (4+2) = 16-6 = 10.
Now we need to form a team of 11 players with 3 bowlers and 1 wicket keeper. So let us find ways of forming such a team.
We know that the total number of ways of selecting r items out of n items is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So number of ways of choosing 3 bowlers out of 4 bowlers will be given by ${}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4\times 3!}{3!\times 1!}$.
Number of ways of choosing 3 bowlers = 4.
Now let us find number of ways of choosing 1 wicket keeper out of 2 wicket keepers we get, ${}^{2}{{C}_{1}}=\dfrac{2!}{1!1!}=2$.
Number of ways of choosing 1 wicket keeper = 1.
We are left with 10 players and we have to choose 11 - (3+1) = 7 players out of them.
So number of ways of choosing 7 non-bowler non-wicket keeper out of 10 are:
${}^{10}{{C}_{7}}=\dfrac{10!}{7!\left( 10-7 \right)!}=\dfrac{10!}{7!3!}=\dfrac{10\times 9\times 8\times 7!}{7!\times 3\times 2}=120$.
Therefore total number of ways of selecting a team of 11 players = ways of selecting bowlers × ways of selecting wicket keeper × ways of selecting other players.
$4\times 2\times 120=960$.
Hence the total number of ways of selecting a team becomes 960.
Note: Students should consider every possibility before giving a final answer. Note that we have used multiplication at the end because all these events are occurring simultaneously. Take care while solving ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Complete step-by-step solution:
Here we are given the total players as 16. Number of bowlers are 4 and number of wicket keepers are 2. Remaining players (non-bowler, non-wicket keeper) will be 16 - (4+2) = 16-6 = 10.
Now we need to form a team of 11 players with 3 bowlers and 1 wicket keeper. So let us find ways of forming such a team.
We know that the total number of ways of selecting r items out of n items is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So number of ways of choosing 3 bowlers out of 4 bowlers will be given by ${}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4\times 3!}{3!\times 1!}$.
Number of ways of choosing 3 bowlers = 4.
Now let us find number of ways of choosing 1 wicket keeper out of 2 wicket keepers we get, ${}^{2}{{C}_{1}}=\dfrac{2!}{1!1!}=2$.
Number of ways of choosing 1 wicket keeper = 1.
We are left with 10 players and we have to choose 11 - (3+1) = 7 players out of them.
So number of ways of choosing 7 non-bowler non-wicket keeper out of 10 are:
${}^{10}{{C}_{7}}=\dfrac{10!}{7!\left( 10-7 \right)!}=\dfrac{10!}{7!3!}=\dfrac{10\times 9\times 8\times 7!}{7!\times 3\times 2}=120$.
Therefore total number of ways of selecting a team of 11 players = ways of selecting bowlers × ways of selecting wicket keeper × ways of selecting other players.
$4\times 2\times 120=960$.
Hence the total number of ways of selecting a team becomes 960.
Note: Students should consider every possibility before giving a final answer. Note that we have used multiplication at the end because all these events are occurring simultaneously. Take care while solving ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE