In a tournament, there are \[n\] teams, \[{T_1},{T_2},...,{T_n}\] with \[n > 5\]. Each team consists of k players, \[k > 3\]. The following pairs of teams have one player common \[{T_1}\] and \[{T_2}\], \[{T_2}\] and \[{T_3}\],…, \[{T_{n - 1}}\] and \[{T_n}\], \[{T_n}\] and \[{T_1}\]. No other pair of teams has many players in common. How many players are participating in the tournament, considering all the \[n\] teams together?
A) \[k(n - 1)\]
B) \[n(k - 3)\]
C) \[n(k - 2)\]
D) \[n(k - 1)\]
Answer
Verified
466.5k+ views
Hint: At first, we will find the total number of players. Since, we have \[n\] number of common players, so we will subtract the number of common players to get exact numbers of players. Finally, we will get the exact number of players.
Complete step-by-step answer:
It is given that; In a tournament, there are \[n\] teams, \[{T_1},{T_2},...,{T_n}\]with \[n > 5\]. Each team consists of k players, \[k > 3\]. The following pairs of teams have one player common \[{T_1}\] and \[{T_2}\], \[{T_2}\] and \[{T_3}\],…, \[{T_{n - 1}}\] and \[{T_n}\], \[{T_n}\] and \[{T_1}\]. Moreover, no other pair of teams has many players in common.
We have to find the number of players participating in the tournament, considering all the \[n\] teams together.
Since, the number of teams is \[n\] and number of players \[k\].
So, the total number of players are \[ = n \times k\].
Further, the following pairs of teams have one player common \[{T_1}\] and \[{T_2}\], \[{T_2}\] and \[{T_3}\],…, \[{T_{n - 1}}\] and \[{T_n}\], \[{T_n}\] and \[{T_1}\]. So, the number of common players is \[n\] since, there are \[n\] numbers of teams.
Since, the total number of players are \[ = n \times k\] and we have \[n\] number of common players, so we will subtract the number of common players to get exact numbers of players.
So, the number of exact numbers of players is \[ = n \times k - n = n(k - 1)\]
Hence, the number of exact numbers of players is \[n(k - 1)\].
The correct option is D) \[n(k - 1)\].
Note: It is given, the number of teams should be greater than 5.
Let us consider, the number of teams is 7.
So, the number of common players in 7 teams is
1 player …………. \[{T_1}\] and \[{T_2}\]
1 player …………. \[{T_2}\] and \[{T_3}\]
1 player …………. \[{T_3}\] and \[{T_4}\]
1 player …………. \[{T_4}\] and \[{T_5}\]
1 player …………. \[{T_5}\] and \[{T_6}\]
1 player …………. \[{T_6}\] and \[{T_7}\]
1 player …………. \[{T_7}\] and \[{T_1}\]
This is an example that, if we choose 7 teams, we will get 7 common players.
Complete step-by-step answer:
It is given that; In a tournament, there are \[n\] teams, \[{T_1},{T_2},...,{T_n}\]with \[n > 5\]. Each team consists of k players, \[k > 3\]. The following pairs of teams have one player common \[{T_1}\] and \[{T_2}\], \[{T_2}\] and \[{T_3}\],…, \[{T_{n - 1}}\] and \[{T_n}\], \[{T_n}\] and \[{T_1}\]. Moreover, no other pair of teams has many players in common.
We have to find the number of players participating in the tournament, considering all the \[n\] teams together.
Since, the number of teams is \[n\] and number of players \[k\].
So, the total number of players are \[ = n \times k\].
Further, the following pairs of teams have one player common \[{T_1}\] and \[{T_2}\], \[{T_2}\] and \[{T_3}\],…, \[{T_{n - 1}}\] and \[{T_n}\], \[{T_n}\] and \[{T_1}\]. So, the number of common players is \[n\] since, there are \[n\] numbers of teams.
Since, the total number of players are \[ = n \times k\] and we have \[n\] number of common players, so we will subtract the number of common players to get exact numbers of players.
So, the number of exact numbers of players is \[ = n \times k - n = n(k - 1)\]
Hence, the number of exact numbers of players is \[n(k - 1)\].
The correct option is D) \[n(k - 1)\].
Note: It is given, the number of teams should be greater than 5.
Let us consider, the number of teams is 7.
So, the number of common players in 7 teams is
1 player …………. \[{T_1}\] and \[{T_2}\]
1 player …………. \[{T_2}\] and \[{T_3}\]
1 player …………. \[{T_3}\] and \[{T_4}\]
1 player …………. \[{T_4}\] and \[{T_5}\]
1 player …………. \[{T_5}\] and \[{T_6}\]
1 player …………. \[{T_6}\] and \[{T_7}\]
1 player …………. \[{T_7}\] and \[{T_1}\]
This is an example that, if we choose 7 teams, we will get 7 common players.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE