
In a triangle ABC, a, b, c are the lengths of its sides and A,B,C are the angles of triangle ABC. The correct relation is given by.
\[(A){\text{ }}(b - c)\left( {\dfrac{{B - C}}{2}} \right) = {\text{a cos}}\dfrac{A}{2}\]
\[(B){\text{ }}(b - c){\text{cos}}\dfrac{A}{2} = {\text{a sin}}\left( {\dfrac{{B - C}}{2}} \right)\]
\[(C){\text{ }}(b - c){\text{sin }}\left( {\dfrac{{B - C}}{2}} \right) = {\text{a cos}}\dfrac{A}{2}\]
\[(D){\text{ }}(b - c){\text{sin }}\dfrac{A}{2} = 2{\text{ a sin}}\left( {\dfrac{{B + C}}{2}} \right)\]
Answer
564.3k+ views
Hint: In the question we had given a triangle also lengths and angles of triangle \[ABC\] are given. We have given four options and we have to check which one out of four options is correct. We will check it by using properties and identities of triangles where angles and sides (lengths) of triangles are given.
Complete step-by-step answer:
In the question, we had given a triangle \[ABC\]and also given that \[a,{\text{ }}b{\text{ and }}c\] are the length of the sides of triangle \[ABC\]and \[A,B,C\] are the angles of the triangle \[ABC\]Them we have to check out that which option out of four is correct I option \[(ii)\]we have to prove.
\[(b - c){\text{ cos}}\dfrac{A}{2} = {\text{a sin }}\left( {\dfrac{{B - C}}{2}} \right)\]
We know that in triangle\[ABC\]
\[a = 2R{\text{ sin }}A,b = 2R{\text{ sin }}B{\text{ and }}C = 2R{\text{ sin }}C\]
Where \[A,B,C\]are the angles of the triangle \[ABC\]
Therefore we are taking the term$\dfrac{{b - c}}{a}$
On substituting the values of \[a,{\text{ }}b,{\text{ }}c\]have we get
$ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R{\text{ sin }}B - 2R{\text{ sin }}C}}{{2R{\text{ }}\operatorname{sin} A}}$
$2$R is common in all the terms on the right hand side.
$ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R({\text{sin }}B - {\text{sin }}C)}}{{2R{\text{ }}\operatorname{sin} A}}$
$2$R gets cancel in numerator & denominator
\[ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{\operatorname{sin} B - \operatorname{sin} C}}{{\operatorname{sin} A}}\]
Applying the formula in numerator which is
$\operatorname{sin} x - \operatorname{sin} y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)$
We get,
\[\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} A}}\]
In the denomination applying the identity
$\operatorname{sin} 2x = 2\sin x\cos Ax,$ we get
\[\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{\text{ }}..............{\text{(1)}}\]
since sum of all the angles of triangle is ${180^0}$ or $\pi $ , so up get
$A + B + C = \pi $
or $B + C = \pi - A$
and the term $\cos \left( {\dfrac{{B + C}}{2}} \right)$ becomes $\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)$
since $\cos \left( {\dfrac{\pi }{2} - x} \right) = {\text{sin }}x$
So $\cos \left( {\dfrac{{B + C}}{2}} \right){\text{ becomes sin }}\dfrac{A}{2}$
So equation $(1)$ becomes
\[ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2\sin \dfrac{A}{2}\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{2\operatorname{sin} \dfrac{A}{2}{\text{ }}\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}\]
The term $2$ sin $\dfrac{A}{2}$ gets cancel in numerator and denominator
\[ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}\]
On cross multiplying it, we get
\[ \Rightarrow (b - c)\cos \dfrac{A}{2} = {\text{a sin}}\left( {\dfrac{{B - C}}{2}} \right)\]
Hence option $(ii)$ is correct.
Note: Sum of all the angles of triangle area ${180^0}$ which is known as angle sum property of the triangles. Also in triangle, the angle $A$ is made opposite to side a and similarly for other which means opposite two sides $a,b{\text{ and }}c$ angles made are \[A,B{\text{ and }}C\] respectively.
Complete step-by-step answer:
In the question, we had given a triangle \[ABC\]and also given that \[a,{\text{ }}b{\text{ and }}c\] are the length of the sides of triangle \[ABC\]and \[A,B,C\] are the angles of the triangle \[ABC\]Them we have to check out that which option out of four is correct I option \[(ii)\]we have to prove.
\[(b - c){\text{ cos}}\dfrac{A}{2} = {\text{a sin }}\left( {\dfrac{{B - C}}{2}} \right)\]
We know that in triangle\[ABC\]
\[a = 2R{\text{ sin }}A,b = 2R{\text{ sin }}B{\text{ and }}C = 2R{\text{ sin }}C\]
Where \[A,B,C\]are the angles of the triangle \[ABC\]
Therefore we are taking the term$\dfrac{{b - c}}{a}$
On substituting the values of \[a,{\text{ }}b,{\text{ }}c\]have we get
$ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R{\text{ sin }}B - 2R{\text{ sin }}C}}{{2R{\text{ }}\operatorname{sin} A}}$
$2$R is common in all the terms on the right hand side.
$ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R({\text{sin }}B - {\text{sin }}C)}}{{2R{\text{ }}\operatorname{sin} A}}$
$2$R gets cancel in numerator & denominator
\[ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{\operatorname{sin} B - \operatorname{sin} C}}{{\operatorname{sin} A}}\]
Applying the formula in numerator which is
$\operatorname{sin} x - \operatorname{sin} y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)$
We get,
\[\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} A}}\]
In the denomination applying the identity
$\operatorname{sin} 2x = 2\sin x\cos Ax,$ we get
\[\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{\text{ }}..............{\text{(1)}}\]
since sum of all the angles of triangle is ${180^0}$ or $\pi $ , so up get
$A + B + C = \pi $
or $B + C = \pi - A$
and the term $\cos \left( {\dfrac{{B + C}}{2}} \right)$ becomes $\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)$
since $\cos \left( {\dfrac{\pi }{2} - x} \right) = {\text{sin }}x$
So $\cos \left( {\dfrac{{B + C}}{2}} \right){\text{ becomes sin }}\dfrac{A}{2}$
So equation $(1)$ becomes
\[ \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2\sin \dfrac{A}{2}\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{2\operatorname{sin} \dfrac{A}{2}{\text{ }}\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}\]
The term $2$ sin $\dfrac{A}{2}$ gets cancel in numerator and denominator
\[ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}\]
On cross multiplying it, we get
\[ \Rightarrow (b - c)\cos \dfrac{A}{2} = {\text{a sin}}\left( {\dfrac{{B - C}}{2}} \right)\]
Hence option $(ii)$ is correct.
Note: Sum of all the angles of triangle area ${180^0}$ which is known as angle sum property of the triangles. Also in triangle, the angle $A$ is made opposite to side a and similarly for other which means opposite two sides $a,b{\text{ and }}c$ angles made are \[A,B{\text{ and }}C\] respectively.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

