Answer
Verified
442.8k+ views
Hint: We join BI and CI. We use angle bisector theorem for the angles $\angle ABD,\angle ACD$ in triangle ABD and ACD to get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$ where $a=BC,b=AC,c=AB$. We use sine law of triangle $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$ and the identities $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$,$\sin 2\theta =2\sin \theta \cos \theta $ to choose the correct options. \[\]
Complete step-by-step solution:
Let us denote the lengths of the sides as $AB=c,BC=a,AC=b$. Let us join BI and CI. We know from the angle bisector theorem, which states that the angle bisector divides the opposite side in a ratio equal to the ratio of lengths of corresponding adjacent sides of the angle. We use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ABD$ which divides the opposite side AD into AI and DI and has adjacent sides AB and BD respectively . We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AB}{BD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{c}{BD}.....\left( 1 \right) \\
\end{align}\]
We again use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ACD$ which divides the opposite side AD into AI and DI and has adjacent sides are AC and CD respectively. We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AC}{CD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{b}{CD}.......\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[\begin{align}
& \dfrac{b}{CD}=\dfrac{c}{BD} \\
& \Rightarrow \dfrac{b}{c}=\dfrac{CD}{BD}\left( \text{By alternendo} \right) \\
\end{align}\]
We add both sides by 1 to have;
\[\begin{align}
& \Rightarrow \dfrac{b+c}{c}=\dfrac{CD+BD}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{BC}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{a}{BD} \\
& \Rightarrow \dfrac{b+c}{a}=\dfrac{c}{BD}......\left( 3 \right) \\
\end{align}\]
We have from (1) and (3)
\[\dfrac{AI}{DI}=\dfrac{b+c}{a}.......\left( 4 \right)\]
We know from sine law that the lengths of triangle and sine of the angle of the opposite sides are always in proportion. It means;
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]
Here $R$ is the circum-radius of the triangle. So we have;
\[a=2R\sin A,b=2R \sin B,c=2R \sin C\]
We put the above values in (4) to have;
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{2R\sin B+2R\sin C}{2R\sin A} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin B+\sin C}{\sin A}......\left( 5 \right) \\
\end{align}\]
We use the identity $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for $C=A,D=C$ and teh sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{A}{2}$ in the above step to have
\[\dfrac{AI}{DI}=\dfrac{2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\]
We know in a triangle $A+B+C=\pi $then we have $\dfrac{\pi }{2}-\dfrac{B+C}{2}=\dfrac{A}{2}$. We have
\[\begin{align}
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)\sin \left( \dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)}....\left( 6 \right) \\
\end{align}\]
We have from (5) and (6)
\[AI:DI=\left( \sin B+\sin C \right):\sin A=\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)\]
So the correct options are A and C.
Note: We can alternatively use the theorem that the in-centre divides the angle bisector in ratio that is equal to the ratio of sum of the lengths of adjacent sides to the opposite sides to directly get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$. We note that in-centre is the point of intersection of angle bisectors and circum-centre is the point of intersection of perpendicular bisectors of sides
Complete step-by-step solution:
Let us denote the lengths of the sides as $AB=c,BC=a,AC=b$. Let us join BI and CI. We know from the angle bisector theorem, which states that the angle bisector divides the opposite side in a ratio equal to the ratio of lengths of corresponding adjacent sides of the angle. We use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ABD$ which divides the opposite side AD into AI and DI and has adjacent sides AB and BD respectively . We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AB}{BD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{c}{BD}.....\left( 1 \right) \\
\end{align}\]
We again use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ACD$ which divides the opposite side AD into AI and DI and has adjacent sides are AC and CD respectively. We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AC}{CD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{b}{CD}.......\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[\begin{align}
& \dfrac{b}{CD}=\dfrac{c}{BD} \\
& \Rightarrow \dfrac{b}{c}=\dfrac{CD}{BD}\left( \text{By alternendo} \right) \\
\end{align}\]
We add both sides by 1 to have;
\[\begin{align}
& \Rightarrow \dfrac{b+c}{c}=\dfrac{CD+BD}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{BC}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{a}{BD} \\
& \Rightarrow \dfrac{b+c}{a}=\dfrac{c}{BD}......\left( 3 \right) \\
\end{align}\]
We have from (1) and (3)
\[\dfrac{AI}{DI}=\dfrac{b+c}{a}.......\left( 4 \right)\]
We know from sine law that the lengths of triangle and sine of the angle of the opposite sides are always in proportion. It means;
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]
Here $R$ is the circum-radius of the triangle. So we have;
\[a=2R\sin A,b=2R \sin B,c=2R \sin C\]
We put the above values in (4) to have;
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{2R\sin B+2R\sin C}{2R\sin A} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin B+\sin C}{\sin A}......\left( 5 \right) \\
\end{align}\]
We use the identity $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for $C=A,D=C$ and teh sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{A}{2}$ in the above step to have
\[\dfrac{AI}{DI}=\dfrac{2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\]
We know in a triangle $A+B+C=\pi $then we have $\dfrac{\pi }{2}-\dfrac{B+C}{2}=\dfrac{A}{2}$. We have
\[\begin{align}
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)\sin \left( \dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)}....\left( 6 \right) \\
\end{align}\]
We have from (5) and (6)
\[AI:DI=\left( \sin B+\sin C \right):\sin A=\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)\]
So the correct options are A and C.
Note: We can alternatively use the theorem that the in-centre divides the angle bisector in ratio that is equal to the ratio of sum of the lengths of adjacent sides to the opposite sides to directly get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$. We note that in-centre is the point of intersection of angle bisectors and circum-centre is the point of intersection of perpendicular bisectors of sides
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE