
In a triangle ABC if $2\angle A = 3\angle B = 6\angle C$,then find A,B,C .
Answer
592.8k+ views
Hint:In this question first let us suppose that $2\angle A = 3\angle B = 6\angle C$ = $x$ . Now try to find out the values of $\angle$ A , $\angle$ B and $\angle $C in the terms of $x$ After that we know that the sum of the interior angles of the triangle is ${180^\circ }$ . By using this property we will find out the value of $x$ and the remaining angles.
Complete step-by-step answer:
From this let us suppose that the t $2\angle A = 3\angle B = 6\angle C$ = $x$
Therefore ;
$2\angle A = x$ , $\angle A = \dfrac{x}{2}$
Similarly ;
$3\angle B = x,\angle B = \dfrac{x}{3}$ and $6\angle C = x,\angle C = \dfrac{x}{6}$
As we know that the sum of the interior angle of a triangle is ${180^\circ }$ .
That means $\angle A + \angle B + \angle C = {180^\circ }$ ,
Now try to write the angle A,B and C in the terms of $x$ , As above we prove that
$\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
Therefore
$\dfrac{x}{2} + \dfrac{x}{3} + \dfrac{x}{6} = {180^\circ }$
So the L.C.M of $2,3,6$ is $6$
Hence change the numerator according to this so we get as ;
$\dfrac{{3x + 2x + x}}{6} = {180^\circ }$
Now multiple by $6$ on both side we get ;
$3x + 2x + x = 180 \times 6$
$6x = 180 \times 6$
Hence $x = 180$
As we know that the $\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
hence
$\angle A = \dfrac{{180}}{2}$ $\angle B = \dfrac{{180}}{3}$ $\angle C = \dfrac{{180}}{6}$
therefore
$\angle A = {90^\circ }$ $\angle B = {60^\circ }$ and $\angle C = {30^\circ }$
Note:Whenever we have found some value of angle, always consider that it is equal to x . Now try to find out some relation between them and use the properties of triangles to proceed further .As in this the angle A is ${90^\circ }$ hence it is a right angle triangle .
Equilateral Triangle : In which all the sides are equal in length . In this triangle all the angles are ${60^ \circ }$.
Complete step-by-step answer:
From this let us suppose that the t $2\angle A = 3\angle B = 6\angle C$ = $x$
Therefore ;
$2\angle A = x$ , $\angle A = \dfrac{x}{2}$
Similarly ;
$3\angle B = x,\angle B = \dfrac{x}{3}$ and $6\angle C = x,\angle C = \dfrac{x}{6}$
As we know that the sum of the interior angle of a triangle is ${180^\circ }$ .
That means $\angle A + \angle B + \angle C = {180^\circ }$ ,
Now try to write the angle A,B and C in the terms of $x$ , As above we prove that
$\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
Therefore
$\dfrac{x}{2} + \dfrac{x}{3} + \dfrac{x}{6} = {180^\circ }$
So the L.C.M of $2,3,6$ is $6$
Hence change the numerator according to this so we get as ;
$\dfrac{{3x + 2x + x}}{6} = {180^\circ }$
Now multiple by $6$ on both side we get ;
$3x + 2x + x = 180 \times 6$
$6x = 180 \times 6$
Hence $x = 180$
As we know that the $\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
hence
$\angle A = \dfrac{{180}}{2}$ $\angle B = \dfrac{{180}}{3}$ $\angle C = \dfrac{{180}}{6}$
therefore
$\angle A = {90^\circ }$ $\angle B = {60^\circ }$ and $\angle C = {30^\circ }$
Note:Whenever we have found some value of angle, always consider that it is equal to x . Now try to find out some relation between them and use the properties of triangles to proceed further .As in this the angle A is ${90^\circ }$ hence it is a right angle triangle .
Equilateral Triangle : In which all the sides are equal in length . In this triangle all the angles are ${60^ \circ }$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

