Answer
Verified
468.6k+ views
Hint:In this question first let us suppose that $2\angle A = 3\angle B = 6\angle C$ = $x$ . Now try to find out the values of $\angle$ A , $\angle$ B and $\angle $C in the terms of $x$ After that we know that the sum of the interior angles of the triangle is ${180^\circ }$ . By using this property we will find out the value of $x$ and the remaining angles.
Complete step-by-step answer:
From this let us suppose that the t $2\angle A = 3\angle B = 6\angle C$ = $x$
Therefore ;
$2\angle A = x$ , $\angle A = \dfrac{x}{2}$
Similarly ;
$3\angle B = x,\angle B = \dfrac{x}{3}$ and $6\angle C = x,\angle C = \dfrac{x}{6}$
As we know that the sum of the interior angle of a triangle is ${180^\circ }$ .
That means $\angle A + \angle B + \angle C = {180^\circ }$ ,
Now try to write the angle A,B and C in the terms of $x$ , As above we prove that
$\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
Therefore
$\dfrac{x}{2} + \dfrac{x}{3} + \dfrac{x}{6} = {180^\circ }$
So the L.C.M of $2,3,6$ is $6$
Hence change the numerator according to this so we get as ;
$\dfrac{{3x + 2x + x}}{6} = {180^\circ }$
Now multiple by $6$ on both side we get ;
$3x + 2x + x = 180 \times 6$
$6x = 180 \times 6$
Hence $x = 180$
As we know that the $\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
hence
$\angle A = \dfrac{{180}}{2}$ $\angle B = \dfrac{{180}}{3}$ $\angle C = \dfrac{{180}}{6}$
therefore
$\angle A = {90^\circ }$ $\angle B = {60^\circ }$ and $\angle C = {30^\circ }$
Note:Whenever we have found some value of angle, always consider that it is equal to x . Now try to find out some relation between them and use the properties of triangles to proceed further .As in this the angle A is ${90^\circ }$ hence it is a right angle triangle .
Equilateral Triangle : In which all the sides are equal in length . In this triangle all the angles are ${60^ \circ }$.
Complete step-by-step answer:
From this let us suppose that the t $2\angle A = 3\angle B = 6\angle C$ = $x$
Therefore ;
$2\angle A = x$ , $\angle A = \dfrac{x}{2}$
Similarly ;
$3\angle B = x,\angle B = \dfrac{x}{3}$ and $6\angle C = x,\angle C = \dfrac{x}{6}$
As we know that the sum of the interior angle of a triangle is ${180^\circ }$ .
That means $\angle A + \angle B + \angle C = {180^\circ }$ ,
Now try to write the angle A,B and C in the terms of $x$ , As above we prove that
$\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
Therefore
$\dfrac{x}{2} + \dfrac{x}{3} + \dfrac{x}{6} = {180^\circ }$
So the L.C.M of $2,3,6$ is $6$
Hence change the numerator according to this so we get as ;
$\dfrac{{3x + 2x + x}}{6} = {180^\circ }$
Now multiple by $6$ on both side we get ;
$3x + 2x + x = 180 \times 6$
$6x = 180 \times 6$
Hence $x = 180$
As we know that the $\angle A = \dfrac{x}{2}$ , $\angle B = \dfrac{x}{3}$ and $\angle C = \dfrac{x}{6}$
hence
$\angle A = \dfrac{{180}}{2}$ $\angle B = \dfrac{{180}}{3}$ $\angle C = \dfrac{{180}}{6}$
therefore
$\angle A = {90^\circ }$ $\angle B = {60^\circ }$ and $\angle C = {30^\circ }$
Note:Whenever we have found some value of angle, always consider that it is equal to x . Now try to find out some relation between them and use the properties of triangles to proceed further .As in this the angle A is ${90^\circ }$ hence it is a right angle triangle .
Equilateral Triangle : In which all the sides are equal in length . In this triangle all the angles are ${60^ \circ }$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE