Answer
Verified
461.7k+ views
Hint:
In this problem, we use the concept of centripetal force and work-energy theorem. First, we about circular motion are a movement of an object along the circumference of a circle. It can be uniform with constant speed, but velocity is not stable. This changing of velocity indicates the presence of centripetal acceleration, and this acceleration is produced by centripetal force.
Complete step by step answer:
Consider a particle moving in a vertical circular motion, so, at the top of a circle, the tension of a particle becomes zero, and mg provides the centripetal force to a particle that acts at the centre.
$\therefore {\text{mg = }}\dfrac{{{\text{m}}{{\text{v}}^2}}}{{\text{r}}}$ Where m is mass, v is velocity, and r is the radius, g is gravity.
$ \Rightarrow {\text{g}} = \dfrac{{{{\text{v}}^2}}}{{\text{r}}}$
$ \Rightarrow {\text{v = }}\sqrt {{\text{gr}}} $
i.e., the velocity at the highest point is${\text{v = }}\sqrt {{\text{gr}}} $
Thus kinetic energy at the highest point=$\dfrac{1}{2}{\text{mgR}}$
Now the velocity at lowest point find out by applying the work energy theorem
Therefore ${{\text{w}}_g} + {{\text{w}}_{\text{T}}} = {\text{K}}{\text{.}}{{\text{E}}_{\text{T}}} + {\text{K}}{\text{.}}{{\text{E}}_{\text{L}}}$
$ \Rightarrow - {\text{mg(2R) + 0 = }}\dfrac{1}{2}{\text{mgR + }}{{\text{K}}_{\text{L}}}$
${{\text{K}}_{\text{L}}} = \dfrac{{{\text{mgR}}}}{2} + 2{\text{mgR}}$
${{\text{K}}_{\text{L}}} = \dfrac{{{\text{5mgR}}}}{2}$
Therefore the ratio of kinetic energy at the highest to the lowest point $ = \dfrac{{{{\text{K}}_{\text{T}}}}}{{{{\text{K}}_{\text{L}}}}}$$ = \dfrac{{\dfrac{1}{2}{\text{mgR}}}}{{\dfrac{5}{2}{\text{mgR}}}} = \dfrac{1}{5} = 0.2$
Additional Information: The kinetic energy of a particle is the product of one-half its mass and therefore the square of its speed, for non-relativistic speeds. The kinetic energy of a system is the sum of the kinetic energies of all the particles within the system.
Note: Particles are objects in motion, in order they have kinetic energy. The faster a particle moves, the more kinetic energy it has. Kinetic energy is related to heat. The faster the particles during a substance move, the warmer it is.
In this problem, we use the concept of centripetal force and work-energy theorem. First, we about circular motion are a movement of an object along the circumference of a circle. It can be uniform with constant speed, but velocity is not stable. This changing of velocity indicates the presence of centripetal acceleration, and this acceleration is produced by centripetal force.
Complete step by step answer:
Consider a particle moving in a vertical circular motion, so, at the top of a circle, the tension of a particle becomes zero, and mg provides the centripetal force to a particle that acts at the centre.
$\therefore {\text{mg = }}\dfrac{{{\text{m}}{{\text{v}}^2}}}{{\text{r}}}$ Where m is mass, v is velocity, and r is the radius, g is gravity.
$ \Rightarrow {\text{g}} = \dfrac{{{{\text{v}}^2}}}{{\text{r}}}$
$ \Rightarrow {\text{v = }}\sqrt {{\text{gr}}} $
i.e., the velocity at the highest point is${\text{v = }}\sqrt {{\text{gr}}} $
Thus kinetic energy at the highest point=$\dfrac{1}{2}{\text{mgR}}$
Now the velocity at lowest point find out by applying the work energy theorem
Therefore ${{\text{w}}_g} + {{\text{w}}_{\text{T}}} = {\text{K}}{\text{.}}{{\text{E}}_{\text{T}}} + {\text{K}}{\text{.}}{{\text{E}}_{\text{L}}}$
$ \Rightarrow - {\text{mg(2R) + 0 = }}\dfrac{1}{2}{\text{mgR + }}{{\text{K}}_{\text{L}}}$
${{\text{K}}_{\text{L}}} = \dfrac{{{\text{mgR}}}}{2} + 2{\text{mgR}}$
${{\text{K}}_{\text{L}}} = \dfrac{{{\text{5mgR}}}}{2}$
Therefore the ratio of kinetic energy at the highest to the lowest point $ = \dfrac{{{{\text{K}}_{\text{T}}}}}{{{{\text{K}}_{\text{L}}}}}$$ = \dfrac{{\dfrac{1}{2}{\text{mgR}}}}{{\dfrac{5}{2}{\text{mgR}}}} = \dfrac{1}{5} = 0.2$
Additional Information: The kinetic energy of a particle is the product of one-half its mass and therefore the square of its speed, for non-relativistic speeds. The kinetic energy of a system is the sum of the kinetic energies of all the particles within the system.
Note: Particles are objects in motion, in order they have kinetic energy. The faster a particle moves, the more kinetic energy it has. Kinetic energy is related to heat. The faster the particles during a substance move, the warmer it is.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE