Answer
Verified
474.6k+ views
Hint:
The atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization. Hybridization also defines the structure of the molecules. For a specific hybridization there is a specific structure of the molecules. Which is called molecular geometry.
Formula used: \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]
Complete step by step answer:
Allene is an organic compound ,where every carbon atom are bounded with another carbon atom with double bond. These compounds are also called cumulated dienes. The structure of the simplest allene is shown below.
The formula to calculate the hybridization of the central molecule is, \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]. where V is the number of valence electrons of the central atom, X is the number of monovalent atoms attached to the central atom, C is the total cationic charge and A is the total anionic charge.
Now for allene \[{{\text{c}}_1}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[{\text{s}}{{\text{p}}^2}\].
Now for allene \[{{\text{c}}_2}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 0 - 0 + 0} \right] \\
= \dfrac{1}{2} \times 4 \\
= 2 \\
\]
For H=2 hybridization is\[{\text{sp}}\].
Now for allene \[{{\text{c}}_3}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[s{p^2}\].
Therefore the hybridizations of allene is \[{\text{sp}}\] and \[s{p^2}\].
The correct option is, B.
Note: Atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization.
The atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization. Hybridization also defines the structure of the molecules. For a specific hybridization there is a specific structure of the molecules. Which is called molecular geometry.
Formula used: \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]
Complete step by step answer:
Allene is an organic compound ,where every carbon atom are bounded with another carbon atom with double bond. These compounds are also called cumulated dienes. The structure of the simplest allene is shown below.
The formula to calculate the hybridization of the central molecule is, \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]. where V is the number of valence electrons of the central atom, X is the number of monovalent atoms attached to the central atom, C is the total cationic charge and A is the total anionic charge.
Now for allene \[{{\text{c}}_1}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[{\text{s}}{{\text{p}}^2}\].
Now for allene \[{{\text{c}}_2}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 0 - 0 + 0} \right] \\
= \dfrac{1}{2} \times 4 \\
= 2 \\
\]
For H=2 hybridization is\[{\text{sp}}\].
Now for allene \[{{\text{c}}_3}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[s{p^2}\].
Therefore the hybridizations of allene is \[{\text{sp}}\] and \[s{p^2}\].
The correct option is, B.
Note: Atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE