In an angular simple harmonic motion angular amplitude of oscillation is $\pi $ rad and time period is 0.4 sec then calculate its angular velocity at angular displacement $\pi /2$ rad.
$\begin{align}
& \text{A}\text{. 34}\text{.3 rad}/\text{sec} \\
& \text{B}\text{. 42}\text{.7 rad}/\text{sec} \\
& \text{C}\text{. 22}\text{.3 rad}/\text{sec} \\
& \text{D}\text{. 50}\text{.3 rad}/\text{sec} \\
\end{align}$
Answer
Verified
467.7k+ views
Hint: Define angular simple harmonic motion. Obtain the expression for the angular displacement of the particle. From the given quantities, find the time for the angular displacement. Obtain the expression for angular velocity by differentiating the angular displacement. By putting the given values, we can find the answer.
Formula used:
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
$w=\dfrac{d\theta }{dt}$
$\omega =\dfrac{2\pi }{T}$
Complete step by step answer:
Given in the question that, the angular simple harmonic motion has angular amplitude of $\pi $ rad.
So, the variation of angular amplitude with time for the angular simple harmonic motion can be written as,
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
Where t is the time and $\omega $ is the angular frequency of the angular simple harmonic motion.
The angular frequency of a motion can be mathematically expressed in terms of the time period of the motion as,
$\omega =\dfrac{2\pi }{T}$
Now, the time period of the oscillation is 0.4 sec.
So, the angular frequency of the oscillation will be,
$\omega =\dfrac{2\pi }{0.4}$
Putting the values for the expression of amplitude, we get that,
$\theta =\pi \sin \left( \dfrac{2\pi }{0.4}t \right)$
Now, the angular velocity of the angular simple harmonic motion can be found by differentiating the angular amplitude of the motion with respect to time.
So, we can write,
$w=\dfrac{d\theta }{dt}$
Where, w is the angular velocity of the motion.
Putting the value for the angular amplitude on the above equation, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{d}{dt}\left( \pi \sin \left( \dfrac{2\pi }{0.4}t \right) \right) \\
& \Rightarrow w=\pi \times \dfrac{2\pi }{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
\end{align}$
Again, we need to find the angular velocity of the particle at an angular displacement of $\pi /2$ rad.
Putting this value on the equation for angular amplitude,
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}=\pi \sin \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{1}{2}=\sin \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{\pi }{6} \\
& \therefore t=\dfrac{0.4}{6\times 2}=\dfrac{0.4}{12}\text{sec} \\
\end{align}$
Putting the value of time on the expression for angular velocity, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}\times \dfrac{0.4}{12} \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \dfrac{\pi }{6} \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\times \dfrac{\sqrt{3}}{2} \\
& \therefore w=42.7\text{rad/sec} \\
\end{align}$
The correct option is (B).
Note:
The angular velocity of a particle can be related with the radial velocity of a particle. Mathematically we can express it as,
$\begin{align}
& v=\omega r \\
& \omega =\dfrac{v}{r} \\
\end{align}$
Where, v is the linear velocity and $\omega $ is the angular velocity.
Formula used:
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
$w=\dfrac{d\theta }{dt}$
$\omega =\dfrac{2\pi }{T}$
Complete step by step answer:
Given in the question that, the angular simple harmonic motion has angular amplitude of $\pi $ rad.
So, the variation of angular amplitude with time for the angular simple harmonic motion can be written as,
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
Where t is the time and $\omega $ is the angular frequency of the angular simple harmonic motion.
The angular frequency of a motion can be mathematically expressed in terms of the time period of the motion as,
$\omega =\dfrac{2\pi }{T}$
Now, the time period of the oscillation is 0.4 sec.
So, the angular frequency of the oscillation will be,
$\omega =\dfrac{2\pi }{0.4}$
Putting the values for the expression of amplitude, we get that,
$\theta =\pi \sin \left( \dfrac{2\pi }{0.4}t \right)$
Now, the angular velocity of the angular simple harmonic motion can be found by differentiating the angular amplitude of the motion with respect to time.
So, we can write,
$w=\dfrac{d\theta }{dt}$
Where, w is the angular velocity of the motion.
Putting the value for the angular amplitude on the above equation, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{d}{dt}\left( \pi \sin \left( \dfrac{2\pi }{0.4}t \right) \right) \\
& \Rightarrow w=\pi \times \dfrac{2\pi }{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
\end{align}$
Again, we need to find the angular velocity of the particle at an angular displacement of $\pi /2$ rad.
Putting this value on the equation for angular amplitude,
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}=\pi \sin \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{1}{2}=\sin \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{\pi }{6} \\
& \therefore t=\dfrac{0.4}{6\times 2}=\dfrac{0.4}{12}\text{sec} \\
\end{align}$
Putting the value of time on the expression for angular velocity, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}\times \dfrac{0.4}{12} \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \dfrac{\pi }{6} \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\times \dfrac{\sqrt{3}}{2} \\
& \therefore w=42.7\text{rad/sec} \\
\end{align}$
The correct option is (B).
Note:
The angular velocity of a particle can be related with the radial velocity of a particle. Mathematically we can express it as,
$\begin{align}
& v=\omega r \\
& \omega =\dfrac{v}{r} \\
\end{align}$
Where, v is the linear velocity and $\omega $ is the angular velocity.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE