Answer
Verified
497.1k+ views
Hint:In order to solve to this problem, use general ${{\text{n}}^{{\text{th}}}}$term of different arithmetic progressions(Aps) which is ${{\text{a}}_{\text{n}}}$= a + (n−1)d so that we can find first and last term of AP which is required to get ${{\text{p}}^{{\text{th}}}}$ term.
Complete step-by-step answer:
We have the ${{\text{n}}^{{\text{th}}}}$term of an AP,
For
${{\text{a}}_{\text{n}}}$=a+(n−1) d
Where, a is the${{\text{n}}^{{\text{th}}}}$ term first term and d is the common difference
As we find ${{\text{n}}^{{\text{th}}}}$ term similarly we can find ${{\text{m}}^{{\text{th}}}}$ term
For ${{\text{m}}^{{\text{th}}}}$ term,
${{\text{a}}_{\text{m}}}$=a + (m−1) d
Where, a is the first term and d is the common difference
In the question it is given that ${{\text{m}}^{{\text{th}}}}$term ${{\text{a}}_{\text{m}}}$is equal to n
${{\text{a}}_{\text{m}}}$=a + (m−1)d = n ................(1)
In the question it is given that ${{\text{n}}^{{\text{th}}}}$term ${{\text{a}}_{\text{n}}}$is equal to m
an=a + (n−1)d = m ..............(2)
on subtracting equation (2) from equation (1),
a+(m−1)d−(a+(n−1)d ) = n−m
(m−1)d−(n-1) d = n−m
On further solving
(m−1−n+1) d = n−m
(m−n)d = n−m
$ \Rightarrow {\text{d = }}\dfrac{{{\text{n - m}}}}{{{\text{m - n}}}}$
$ \Rightarrow {\text{d = - 1}}$ ; here we get common difference of AP
Substitute d = -1 in equation (1),
a+(m−1) (−1) = n
a−m+1=n
a = n+m−1; Here we get first term of AP
For ${{\text{p}}^{{\text{th}}}}$ term
${{\text{a}}_{\text{p}}}$=a+(p−1)d
On putting a= n+m−1 & d = -1 in above equation
= n+m−1+(p−1) (−1)
=n+m−1−p+1
= n+m−p ; Which is required ${{\text{p}}^{{\text{th}}}}$term
Hence Option C is correct.
Note: Whenever we face such type of problems we must choose expressions of nth term along with the proper understanding of common difference and first term of different APs, because by applying further proper mathematics like Addition or subtraction on general nth term we can get our desired result.
Complete step-by-step answer:
We have the ${{\text{n}}^{{\text{th}}}}$term of an AP,
For
${{\text{a}}_{\text{n}}}$=a+(n−1) d
Where, a is the${{\text{n}}^{{\text{th}}}}$ term first term and d is the common difference
As we find ${{\text{n}}^{{\text{th}}}}$ term similarly we can find ${{\text{m}}^{{\text{th}}}}$ term
For ${{\text{m}}^{{\text{th}}}}$ term,
${{\text{a}}_{\text{m}}}$=a + (m−1) d
Where, a is the first term and d is the common difference
In the question it is given that ${{\text{m}}^{{\text{th}}}}$term ${{\text{a}}_{\text{m}}}$is equal to n
${{\text{a}}_{\text{m}}}$=a + (m−1)d = n ................(1)
In the question it is given that ${{\text{n}}^{{\text{th}}}}$term ${{\text{a}}_{\text{n}}}$is equal to m
an=a + (n−1)d = m ..............(2)
on subtracting equation (2) from equation (1),
a+(m−1)d−(a+(n−1)d ) = n−m
(m−1)d−(n-1) d = n−m
On further solving
(m−1−n+1) d = n−m
(m−n)d = n−m
$ \Rightarrow {\text{d = }}\dfrac{{{\text{n - m}}}}{{{\text{m - n}}}}$
$ \Rightarrow {\text{d = - 1}}$ ; here we get common difference of AP
Substitute d = -1 in equation (1),
a+(m−1) (−1) = n
a−m+1=n
a = n+m−1; Here we get first term of AP
For ${{\text{p}}^{{\text{th}}}}$ term
${{\text{a}}_{\text{p}}}$=a+(p−1)d
On putting a= n+m−1 & d = -1 in above equation
= n+m−1+(p−1) (−1)
=n+m−1−p+1
= n+m−p ; Which is required ${{\text{p}}^{{\text{th}}}}$term
Hence Option C is correct.
Note: Whenever we face such type of problems we must choose expressions of nth term along with the proper understanding of common difference and first term of different APs, because by applying further proper mathematics like Addition or subtraction on general nth term we can get our desired result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE