
In an A.P. the sum of first ten terms is$210$ and the difference between the first and last term is$36$.Find the first term in the A.P.
$
A.{\text{ }}2 \\
B.{\text{ }}3 \\
C.{\text{ }}4 \\
D.{\text{ }}5 \\
$
Answer
622.8k+ views
Hint- Obtain the equations using given information and use known formulas of Arithmetic Progression , clearly sum of first n terms of AP formula will be used here.
Let${S_n}$ denote the sum of $n$ terms.
We know that,
${S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right)$, where $a$ is the first term and ${a_n}$ is the last term.
Now, we have given that the sum of the first ten terms is $210$.
Therefore, the number of terms is $10$.
$
\Rightarrow {S_n} = \dfrac{{10}}{2}\left( {a + {a_n}} \right) \\
\Rightarrow 210 = 5\left( {a + {a_n}} \right) \\
\Rightarrow \dfrac{{210}}{5} = \left( {a + {a_n}} \right) \\
\Rightarrow 42 = a + {a_n} - - - - \left( i \right) \\
$
Also, the difference between the first and last term is $36$.
$36 = {a_n} - a - - - - \left( {ii} \right)$
Solving $\left( i \right)$ and $\left( {ii} \right)$ equations simultaneously we get,
${a_n} = 39$
Putting the value of ${a_n}$ in equation $\left( i \right)$ we get,
$a = 3$.
Hence the first term is $3.$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us. Then write the formula of sum of series in an AP and then put values in the formula and thus we get the answer.
Let${S_n}$ denote the sum of $n$ terms.
We know that,
${S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right)$, where $a$ is the first term and ${a_n}$ is the last term.
Now, we have given that the sum of the first ten terms is $210$.
Therefore, the number of terms is $10$.
$
\Rightarrow {S_n} = \dfrac{{10}}{2}\left( {a + {a_n}} \right) \\
\Rightarrow 210 = 5\left( {a + {a_n}} \right) \\
\Rightarrow \dfrac{{210}}{5} = \left( {a + {a_n}} \right) \\
\Rightarrow 42 = a + {a_n} - - - - \left( i \right) \\
$
Also, the difference between the first and last term is $36$.
$36 = {a_n} - a - - - - \left( {ii} \right)$
Solving $\left( i \right)$ and $\left( {ii} \right)$ equations simultaneously we get,
${a_n} = 39$
Putting the value of ${a_n}$ in equation $\left( i \right)$ we get,
$a = 3$.
Hence the first term is $3.$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us. Then write the formula of sum of series in an AP and then put values in the formula and thus we get the answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

