Answer
Verified
500.1k+ views
Hint: Sum of n terms of AP ${S_n} = \dfrac{n}{2}[2a + (n - 1)d]$.
Given sum of first ten terms = $ - 150$
We know that Sum of n terms of AP ${S_n} = \dfrac{n}{2}[2a + (n - 1)d]$
Therefore,
$\
\Rightarrow {S_{10}} = \dfrac{{10}}{2}[2a + (10 - 1)d] \\
\Rightarrow - 150 = 5[2a + 9d] \\
\Rightarrow - 150 = 10a + 45d \to (1) \\
\ $
And also given that sum of next ten terms =$ - 550$ (which also includes sum of first ten terms value which has to be removed)
Sum of next ten terms = $ - 550$
$ \Rightarrow $$ - 150$$ - 550$ = $\dfrac{{20}}{2}[2a + (20 - 1)d]$
$\
\Rightarrow - 700 = 10(2a + 19d) \\
\Rightarrow - 70 = 2a + 19d \to (2) \\
\ $
Multiplying equation $(2) \times 5$ then we get
$ \Rightarrow - 350 = 10a + 95d \to (3)$
On solving $(1)\& (3)$ we get
$d = - 4$
Now by substituting $'d'$ value in equation $(1)$ we get
$\
\Rightarrow - 150 = 10a + 45d \\
\Rightarrow - 150 = 10a + 45( - 4) \\
\Rightarrow 10a = - 150 + 180 \\
\Rightarrow 10a = 30 \\
\Rightarrow a = 3 \\
\ $
Hence we got the value $a = 3,d = - 4$
We know that for an AP series $'a'$ be the first term and $'d'$ is the difference between the terms.
We also know that AP series will be of the form $a,a + d,a + 2d,a + 3d.......$
On substituting the $'a'$ and $'d'$ values
We get the values of series as 3,-1,-5,-9
Then the AP series will be $3, - 1, - 5, - 9....$
Note: In the above problem second condition i.e. sum of next ten terms includes sum of first 10 terms plus the other ten terms (where sum of first ten terms need to be subtracted from sum given for second condition) .Ignoring such simple condition will affect the answer.
Given sum of first ten terms = $ - 150$
We know that Sum of n terms of AP ${S_n} = \dfrac{n}{2}[2a + (n - 1)d]$
Therefore,
$\
\Rightarrow {S_{10}} = \dfrac{{10}}{2}[2a + (10 - 1)d] \\
\Rightarrow - 150 = 5[2a + 9d] \\
\Rightarrow - 150 = 10a + 45d \to (1) \\
\ $
And also given that sum of next ten terms =$ - 550$ (which also includes sum of first ten terms value which has to be removed)
Sum of next ten terms = $ - 550$
$ \Rightarrow $$ - 150$$ - 550$ = $\dfrac{{20}}{2}[2a + (20 - 1)d]$
$\
\Rightarrow - 700 = 10(2a + 19d) \\
\Rightarrow - 70 = 2a + 19d \to (2) \\
\ $
Multiplying equation $(2) \times 5$ then we get
$ \Rightarrow - 350 = 10a + 95d \to (3)$
On solving $(1)\& (3)$ we get
$d = - 4$
Now by substituting $'d'$ value in equation $(1)$ we get
$\
\Rightarrow - 150 = 10a + 45d \\
\Rightarrow - 150 = 10a + 45( - 4) \\
\Rightarrow 10a = - 150 + 180 \\
\Rightarrow 10a = 30 \\
\Rightarrow a = 3 \\
\ $
Hence we got the value $a = 3,d = - 4$
We know that for an AP series $'a'$ be the first term and $'d'$ is the difference between the terms.
We also know that AP series will be of the form $a,a + d,a + 2d,a + 3d.......$
On substituting the $'a'$ and $'d'$ values
We get the values of series as 3,-1,-5,-9
Then the AP series will be $3, - 1, - 5, - 9....$
Note: In the above problem second condition i.e. sum of next ten terms includes sum of first 10 terms plus the other ten terms (where sum of first ten terms need to be subtracted from sum given for second condition) .Ignoring such simple condition will affect the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE