In an equilateral triangle, (circumradius) : (inradius) : (exradius) is equal to,
A. 1:1:1
B. 1:2:3
C. 2:1:3
D. 3:2:4
Answer
Verified
508.2k+ views
Hint: We use some trigonometric formulas for finding the value of circumradius, inradius and exradius, in terms of the side of the triangle. We draw the diagram of incircle,circumcircle and excircle to show the relationship between radius and sides.
Complete step-by-step answer:
Let us assume the length of the sides of the equilateral triangle to be a, and the triangle to be \[\Delta ABC\].
First, let us find the circumradius.
O is the centre of the circumcircle of the triangle.
We know that the angle made by a segment at the centre is twice the angle made by it on the circumference.
$\therefore \angle BOC=2\angle BAC$
$\angle BAC=60{}^\circ $ since \[\Delta ABC\] is an equilateral $\Delta $.
$\Rightarrow \angle BOC=120{}^\circ $
Let us apply the cosine formula on $\angle BOC$ in $\Delta BOC$.
OB and OC are the radii of the circumcircle of \[\Delta ABC\]. Let us assume them to be R.
According to cosine formula,
$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
We apply the above formula here,
$\begin{align}
& \cos \angle BOC=\dfrac{O{{B}^{2}}+O{{C}^{2}}-B{{C}^{2}}}{\left( O.B \right)\left( OC \right)} \\
& \cos 120{}^\circ =\dfrac{{{R}^{2}}+{{R}^{2}}-{{a}^{2}}}{2{{R}^{2}}} \\
\end{align}$
$\begin{align}
& -\dfrac{1}{2}=\dfrac{{{R}^{2}}+{{R}^{2}}-{{a}^{2}}}{2{{R}^{2}}} \\
& -{{R}^{2}}={{R}^{2}}+{{R}^{2}}-{{a}^{2}} \\
& 3{{R}^{2}}={{a}^{2}} \\
& \Rightarrow R=\dfrac{a}{\sqrt{3}}. \\
& \therefore \ \text{circumradius}=\dfrac{a}{\sqrt{3}}. \\
\end{align}$
Now, let us find the inradius.
AD is perpendicular to BC.
HD is the inradius of $\Delta ABC$.
In an equilateral $\Delta $, perpendicular divides the base in two equal parts.
$\therefore BD=CD=\dfrac{a}{2}$
Let us assume HD to be r.
In $\Delta BHD$,
$\begin{align}
& \tan \left( \angle HBD \right)=\dfrac{HD}{BD} \\
& \tan \left( 30{}^\circ \right)=\dfrac{r}{\dfrac{a}{2}} \\
& \dfrac{1}{\sqrt{3}}=\dfrac{2r}{a} \\
& \Rightarrow r=\dfrac{a}{2\sqrt{3}}. \\
& \therefore inradius=\dfrac{a}{2\sqrt{3}}. \\
\end{align}$
Now, we find the excircle of the triangle:
X is the centre of the excircle of $\Delta ABC$.
BD is the perpendicular from B to D joining X.
In equilateral, altitude is the angle bisector of the triangle.
$\begin{align}
& \therefore \angle ABX=\dfrac{1}{2}\angle ABC=30{}^\circ \\
& \dfrac{BD}{AD}=\tan \dfrac{\pi }{3} \\
& \Rightarrow BD=\dfrac{\sqrt{3}}{2}a \\
\end{align}$
$\begin{align}
& MX=DX=x=exradius\ of\ \Delta ABC. \\
& In\ \Delta MBX, \\
& \sin \left( \angle MBX \right)=\dfrac{MX}{BX} \\
& \sin \left( \dfrac{\pi }{6} \right)=\dfrac{MX}{BD+DX} \\
& \dfrac{1}{2}=\dfrac{x}{x+\dfrac{\sqrt{3}}{2}a} \\
& \Rightarrow x+\dfrac{\sqrt{3}}{2}a=2x \\
& \Rightarrow x=\dfrac{\sqrt{3}}{2}a \\
\end{align}$
Hence, exradius is $\dfrac{\sqrt{3}}{2}a$.
Circumradius : inradius : exradius
$\begin{align}
& \Rightarrow R:r:x \\
& =\dfrac{a}{\sqrt{3}}:\dfrac{a}{2\sqrt{3}}:\dfrac{\sqrt{3}}{2}a \\
& =2:1:3 \\
\end{align}$
Therefore the answer is 2:1:3.
Note: We can directly use the formula for a general $\Delta $.
Inradius $=\sqrt{\dfrac{\left( s-a \right)\left( s-b \right)\left( s-c \right)}{s}}$
Circumradius $=\dfrac{abc}{4\Delta }$
Exradius: ${{r}_{1}}=\dfrac{\Delta }{s-a}$
where $\Delta $ is the area of the $\Delta $.
Complete step-by-step answer:
Let us assume the length of the sides of the equilateral triangle to be a, and the triangle to be \[\Delta ABC\].
First, let us find the circumradius.
O is the centre of the circumcircle of the triangle.
We know that the angle made by a segment at the centre is twice the angle made by it on the circumference.
$\therefore \angle BOC=2\angle BAC$
$\angle BAC=60{}^\circ $ since \[\Delta ABC\] is an equilateral $\Delta $.
$\Rightarrow \angle BOC=120{}^\circ $
Let us apply the cosine formula on $\angle BOC$ in $\Delta BOC$.
OB and OC are the radii of the circumcircle of \[\Delta ABC\]. Let us assume them to be R.
According to cosine formula,
$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
We apply the above formula here,
$\begin{align}
& \cos \angle BOC=\dfrac{O{{B}^{2}}+O{{C}^{2}}-B{{C}^{2}}}{\left( O.B \right)\left( OC \right)} \\
& \cos 120{}^\circ =\dfrac{{{R}^{2}}+{{R}^{2}}-{{a}^{2}}}{2{{R}^{2}}} \\
\end{align}$
$\begin{align}
& -\dfrac{1}{2}=\dfrac{{{R}^{2}}+{{R}^{2}}-{{a}^{2}}}{2{{R}^{2}}} \\
& -{{R}^{2}}={{R}^{2}}+{{R}^{2}}-{{a}^{2}} \\
& 3{{R}^{2}}={{a}^{2}} \\
& \Rightarrow R=\dfrac{a}{\sqrt{3}}. \\
& \therefore \ \text{circumradius}=\dfrac{a}{\sqrt{3}}. \\
\end{align}$
Now, let us find the inradius.
AD is perpendicular to BC.
HD is the inradius of $\Delta ABC$.
In an equilateral $\Delta $, perpendicular divides the base in two equal parts.
$\therefore BD=CD=\dfrac{a}{2}$
Let us assume HD to be r.
In $\Delta BHD$,
$\begin{align}
& \tan \left( \angle HBD \right)=\dfrac{HD}{BD} \\
& \tan \left( 30{}^\circ \right)=\dfrac{r}{\dfrac{a}{2}} \\
& \dfrac{1}{\sqrt{3}}=\dfrac{2r}{a} \\
& \Rightarrow r=\dfrac{a}{2\sqrt{3}}. \\
& \therefore inradius=\dfrac{a}{2\sqrt{3}}. \\
\end{align}$
Now, we find the excircle of the triangle:
X is the centre of the excircle of $\Delta ABC$.
BD is the perpendicular from B to D joining X.
In equilateral, altitude is the angle bisector of the triangle.
$\begin{align}
& \therefore \angle ABX=\dfrac{1}{2}\angle ABC=30{}^\circ \\
& \dfrac{BD}{AD}=\tan \dfrac{\pi }{3} \\
& \Rightarrow BD=\dfrac{\sqrt{3}}{2}a \\
\end{align}$
$\begin{align}
& MX=DX=x=exradius\ of\ \Delta ABC. \\
& In\ \Delta MBX, \\
& \sin \left( \angle MBX \right)=\dfrac{MX}{BX} \\
& \sin \left( \dfrac{\pi }{6} \right)=\dfrac{MX}{BD+DX} \\
& \dfrac{1}{2}=\dfrac{x}{x+\dfrac{\sqrt{3}}{2}a} \\
& \Rightarrow x+\dfrac{\sqrt{3}}{2}a=2x \\
& \Rightarrow x=\dfrac{\sqrt{3}}{2}a \\
\end{align}$
Hence, exradius is $\dfrac{\sqrt{3}}{2}a$.
Circumradius : inradius : exradius
$\begin{align}
& \Rightarrow R:r:x \\
& =\dfrac{a}{\sqrt{3}}:\dfrac{a}{2\sqrt{3}}:\dfrac{\sqrt{3}}{2}a \\
& =2:1:3 \\
\end{align}$
Therefore the answer is 2:1:3.
Note: We can directly use the formula for a general $\Delta $.
Inradius $=\sqrt{\dfrac{\left( s-a \right)\left( s-b \right)\left( s-c \right)}{s}}$
Circumradius $=\dfrac{abc}{4\Delta }$
Exradius: ${{r}_{1}}=\dfrac{\Delta }{s-a}$
where $\Delta $ is the area of the $\Delta $.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Write an application to the principal requesting five class 10 english CBSE
Difference between mass and weight class 10 physics CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE
10 examples of evaporation in daily life with explanations