Answer
Verified
501.3k+ views
Hint: Here some of the students who failed in Hindi may also fail in English too. We are going to use union of sets to solve the given problem.
Let P(H) is the percentage of students who failed in Hindi and P(E) be the percentage of students who failed in English.
From the given information, we have
Percentage of students failed in Hindi = P (H) = 35%
Percentage of students failed in English = P (E) = 45%
Percentage of students who failed in both subjects = $P(H \cap E)$ =20%
$\because \left( {A \cup B} \right) = \left( A \right) + \left( B \right) - \left( {A \cap B} \right)$ [Union of sets]
The total fail percentage is
$ \Rightarrow P(H \cup E) = P(H) + P(E) - P(H \cap E)$
$ \Rightarrow P(H \cup E) = 35 + 45 - 20 = 60$
$ \Rightarrow $ 60% of students failed in at least one.
In class we have 100% students. Then number of students who passed in both subjects = 100% – 60% = 40%
$\therefore $40% of students passed in both the subjects.
Note:
We need to understand the given information carefully. We can also use Venn diagrams.
In the above diagram, if we observe we have individual percentages of each set. Percentage of students who failed only in Hindi is 15%, the percentage of students who failed only in English is 25% and the percentage of students who failed in both Hindi and English is 20%. A student will either pass or fail in the subject.
$ \Rightarrow $Pass percentage + fail percentage = 100%
When we get the total failure percentage, we can find the pass percentage easily.
Let P(H) is the percentage of students who failed in Hindi and P(E) be the percentage of students who failed in English.
From the given information, we have
Percentage of students failed in Hindi = P (H) = 35%
Percentage of students failed in English = P (E) = 45%
Percentage of students who failed in both subjects = $P(H \cap E)$ =20%
$\because \left( {A \cup B} \right) = \left( A \right) + \left( B \right) - \left( {A \cap B} \right)$ [Union of sets]
The total fail percentage is
$ \Rightarrow P(H \cup E) = P(H) + P(E) - P(H \cap E)$
$ \Rightarrow P(H \cup E) = 35 + 45 - 20 = 60$
$ \Rightarrow $ 60% of students failed in at least one.
In class we have 100% students. Then number of students who passed in both subjects = 100% – 60% = 40%
$\therefore $40% of students passed in both the subjects.
Note:
We need to understand the given information carefully. We can also use Venn diagrams.
In the above diagram, if we observe we have individual percentages of each set. Percentage of students who failed only in Hindi is 15%, the percentage of students who failed only in English is 25% and the percentage of students who failed in both Hindi and English is 20%. A student will either pass or fail in the subject.
$ \Rightarrow $Pass percentage + fail percentage = 100%
When we get the total failure percentage, we can find the pass percentage easily.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE