Answer
Verified
468.6k+ views
Hint: We know that in damped oscillation the amplitude, always increases or decreases exponentially. Now using this statement we have to write the mathematical equation to represent this. Now, after representing in mathematical form we have to derive an equation for the amplitude after 100 oscillations and using this equation we need to satisfy the equation that we will be making with the help of amplitude after 200 oscillations.
Formula used:
$A={{A}_{0}}{{e}^{-\gamma t}}$
Complete answer:
We know that the initial amplitude is ${{A}_{0}}$ .
We know that in damped oscillation the amplitude always increases or decreases exponentially.
We can represent the above statement using the formula,
$A={{A}_{0}}{{e}^{-\gamma t}}$.
Now, if we consider that the time taken for one oscillation is T seconds.
Then the time taken for 100 oscillations must be 100T.
Now, it is given in the question that the amplitude becomes one third at after 100 oscillations, so
\[\dfrac{{{A}_{0}}}{3}={{A}_{0}}{{e}^{-100\gamma T}}\]
Now,
\[\dfrac{1}{3}={{e}^{-100\gamma T}}\]………. Eq.1.
Now for 200 oscillations time taken is 200 T.
And let us consider the amplitude as, ${A}'$
So, according to problem,
\[{A}'={{A}_{0}}{{e}^{-200\gamma T}}\],
\[{A}'={{A}_{0}}{{\left( {{e}^{-100\gamma T}} \right)}^{2}}\], as (\[\dfrac{1}{3}={{e}^{-100\gamma T}}\]).
\[{A}'={{A}_{0}}{{\left( \dfrac{1}{3} \right)}^{2}}\],
So,
\[{A}'=\dfrac{{{A}_{0}}}{9}\].
So, the correct answer is “Option D”.
Additional Information:
An oscillation that during oscillating with due time, the amplitude decreases and eventually the oscillation stops and comes to rest. This type of oscillation is known as damped oscillation.
Note:
In the equation $A={{A}_{0}}{{e}^{-\gamma t}}$, $\gamma $ is the damping coefficient, and t is the time. We have to find the first equation after doing all the possible calculations or else it will not satisfy the second equation and the result will not come.
Formula used:
$A={{A}_{0}}{{e}^{-\gamma t}}$
Complete answer:
We know that the initial amplitude is ${{A}_{0}}$ .
We know that in damped oscillation the amplitude always increases or decreases exponentially.
We can represent the above statement using the formula,
$A={{A}_{0}}{{e}^{-\gamma t}}$.
Now, if we consider that the time taken for one oscillation is T seconds.
Then the time taken for 100 oscillations must be 100T.
Now, it is given in the question that the amplitude becomes one third at after 100 oscillations, so
\[\dfrac{{{A}_{0}}}{3}={{A}_{0}}{{e}^{-100\gamma T}}\]
Now,
\[\dfrac{1}{3}={{e}^{-100\gamma T}}\]………. Eq.1.
Now for 200 oscillations time taken is 200 T.
And let us consider the amplitude as, ${A}'$
So, according to problem,
\[{A}'={{A}_{0}}{{e}^{-200\gamma T}}\],
\[{A}'={{A}_{0}}{{\left( {{e}^{-100\gamma T}} \right)}^{2}}\], as (\[\dfrac{1}{3}={{e}^{-100\gamma T}}\]).
\[{A}'={{A}_{0}}{{\left( \dfrac{1}{3} \right)}^{2}}\],
So,
\[{A}'=\dfrac{{{A}_{0}}}{9}\].
So, the correct answer is “Option D”.
Additional Information:
An oscillation that during oscillating with due time, the amplitude decreases and eventually the oscillation stops and comes to rest. This type of oscillation is known as damped oscillation.
Note:
In the equation $A={{A}_{0}}{{e}^{-\gamma t}}$, $\gamma $ is the damping coefficient, and t is the time. We have to find the first equation after doing all the possible calculations or else it will not satisfy the second equation and the result will not come.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE