
In $\text{Fe}{{\left( \text{CO} \right)}_{5}}$, the $\text{Fe}-\text{C}$ bond possess:
A. $\pi $ character only
B. both $\pi $ and $\sigma $ characters
C. ionic character
D. $\sigma $ character only
Answer
582.9k+ views
Hint: The $\text{Fe}{{\left( \text{CO} \right)}_{5}}$ compound forms metal-carbonyl bonds with each other. The structure of this compound is the same as others but the bonding is different. This bonding involves the d-orbitals and antibonding orbitals of the metal atom.
Complete step by step answer:
- In $\text{Fe}{{\left( \text{CO} \right)}_{5}}$, there are same ligands which is $\text{CO}$ so, $\text{Fe}{{\left( \text{CO} \right)}_{5}}$ is a homoleptic carbonyl compound. Such compounds are formed by most of the transition metals or d-block elements and they have simple and well defined structures. The shape of the compound is trigonal bi-pyramidal. The IUPAC name of the compound is Pentacarbonyliron $\left( 0 \right)$. The structure is
Let us discuss the special type of bonding in $\text{Fe}{{\left( \text{CO} \right)}_{5}}$:
The special type of bonding is named as ‘synergic bonding’. The ligand $\left( \text{CO} \right)$ donates its lone pair of electrons to the vacant orbitals of the central metal atom which is an iron atom and forms the sigma-bond with it. As the iron atom also possesses some electrons in its d-orbitals. The configuration of iron is $1{{\text{s}}^{2}}\text{2}{{\text{s}}^{2}}\text{2}{{\text{p}}^{6}}\text{3}{{\text{s}}^{2}}\text{3}{{\text{p}}^{6}}\text{4}{{\text{s}}^{2}}\text{3}{{\text{d}}^{6}}$ or $\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}$.
It back donates these electrons to the molecular orbitals of the ligand forming a $\pi $-bond. The $\text{M}-\text{C}$ $\pi $ bond is formed by the donation of electrons from a filled d-orbital of metal into the vacant antibonding ${{\pi }^{*}}$ orbital of carbon monoxide. The bonding looks like
This creates a synergic effect between the metal to ligand which strengthens the bond between $\text{CO}$ and the metal. The metal-carbon bond in metal carbonyls possesses both $\sigma $ and $\pi $ character.
So, the correct answer is “Option B”.
Note: One important point to keep in mind is that the metal atom donates its electron pairs to the antibonding MO of $\text{CO}$, so the $\text{CO}$ bond is weakened by this synergic bonding which leads to a larger $\text{CO}$ bond length in the complex.
Complete step by step answer:
- In $\text{Fe}{{\left( \text{CO} \right)}_{5}}$, there are same ligands which is $\text{CO}$ so, $\text{Fe}{{\left( \text{CO} \right)}_{5}}$ is a homoleptic carbonyl compound. Such compounds are formed by most of the transition metals or d-block elements and they have simple and well defined structures. The shape of the compound is trigonal bi-pyramidal. The IUPAC name of the compound is Pentacarbonyliron $\left( 0 \right)$. The structure is
Let us discuss the special type of bonding in $\text{Fe}{{\left( \text{CO} \right)}_{5}}$:
The special type of bonding is named as ‘synergic bonding’. The ligand $\left( \text{CO} \right)$ donates its lone pair of electrons to the vacant orbitals of the central metal atom which is an iron atom and forms the sigma-bond with it. As the iron atom also possesses some electrons in its d-orbitals. The configuration of iron is $1{{\text{s}}^{2}}\text{2}{{\text{s}}^{2}}\text{2}{{\text{p}}^{6}}\text{3}{{\text{s}}^{2}}\text{3}{{\text{p}}^{6}}\text{4}{{\text{s}}^{2}}\text{3}{{\text{d}}^{6}}$ or $\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}$.
It back donates these electrons to the molecular orbitals of the ligand forming a $\pi $-bond. The $\text{M}-\text{C}$ $\pi $ bond is formed by the donation of electrons from a filled d-orbital of metal into the vacant antibonding ${{\pi }^{*}}$ orbital of carbon monoxide. The bonding looks like
This creates a synergic effect between the metal to ligand which strengthens the bond between $\text{CO}$ and the metal. The metal-carbon bond in metal carbonyls possesses both $\sigma $ and $\pi $ character.
So, the correct answer is “Option B”.
Note: One important point to keep in mind is that the metal atom donates its electron pairs to the antibonding MO of $\text{CO}$, so the $\text{CO}$ bond is weakened by this synergic bonding which leads to a larger $\text{CO}$ bond length in the complex.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

