
In forced oscillation of a particle the amplitude is maximum for a frequency of the force, while the energy is maximum for a frequency of the force, then
(a)
(b)
(c) , when damping is small and when damping is large
(d)
Answer
402.6k+ views
Hint: Oscillation is the periodic fluctuation of a measure around a central value (often a point of equilibrium) or between two or more states, usually in time. Mechanical oscillation is exactly described by the term vibration. A swinging pendulum and alternating current are both instances of oscillation.
Complete answer:
The energy oscillates back and forth between kinetic and potential in undamped simple harmonic motion, moving entirely from one to the other as the system oscillates. The motion of an item on a frictionless surface linked to a spring begins with the entire amount of energy stored in the spring. The elastic potential energy is transformed to kinetic energy as the item moves, eventually becoming totally kinetic energy at the equilibrium point. The spring then converts it back into elastic potential energy, and when the kinetic energy is entirely converted, the velocity becomes zero, and so on.
It's worth noting that the maximum velocity is determined by three variables. The maximum velocity is proportional to the amplitude. As you may expect, the maximum velocity increases as the maximum displacement increases. Stiffer systems have a higher maximum velocity because they apply more force for the same displacement. The formula for reflects this fact; it is proportional to the square root of the force constant k. Finally, because maximum velocity is inversely related to the square root of m, maximum velocity is less for objects with greater masses. Objects with enormous masses accelerate more slowly for a given force.
The frequency of force must be identical to the starting frequency for the amplitude of oscillation and energy to be maximal, which is only achievable in resonance. In a condition of resonance is the correct answer
Hence option a is correct.
Note:
Forced oscillation occurs when a body oscillates as a result of an external periodic force. Because of the external energy provided to the system, the amplitude of the oscillation is damped but remains constant. When you push someone on a swing, for example, you must maintain pushing them at regular intervals to keep the swing from reducing.
Complete answer:
The energy oscillates back and forth between kinetic and potential in undamped simple harmonic motion, moving entirely from one to the other as the system oscillates. The motion of an item on a frictionless surface linked to a spring begins with the entire amount of energy stored in the spring. The elastic potential energy is transformed to kinetic energy as the item moves, eventually becoming totally kinetic energy at the equilibrium point. The spring then converts it back into elastic potential energy, and when the kinetic energy is entirely converted, the velocity becomes zero, and so on.
It's worth noting that the maximum velocity is determined by three variables. The maximum velocity is proportional to the amplitude. As you may expect, the maximum velocity increases as the maximum displacement increases. Stiffer systems have a higher maximum velocity because they apply more force for the same displacement. The formula for
The frequency of force must be identical to the starting frequency for the amplitude of oscillation and energy to be maximal, which is only achievable in resonance. In a condition of resonance
Hence option a is correct.
Note:
Forced oscillation occurs when a body oscillates as a result of an external periodic force. Because of the external energy provided to the system, the amplitude of the oscillation is damped but remains constant. When you push someone on a swing, for example, you must maintain pushing them at regular intervals to keep the swing from reducing.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
