In how many ways can 4 consonants and 2 vowels be selected in the English alphabet consisting of 21 consonants and 5 vowels?
Answer
Verified
376.8k+ views
Hint: We first separate the groups in which the consonants have the majority. We separately find the number of ways we can choose 4 consonants and 2 vowels from 21 consonants and 5 vowels. The general form of combination is ${}^{n}{{C}_{r}}$. It’s used to express the notion of choosing r objects out of n objects. We multiply them to find the solution.
Complete step-by-step solution:
There are in total 21 consonants and 5 vowels out of which we need to select 4 consonants and 2 vowels. The notion of choosing r objects out of n objects is denoted by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
The number of choices for 4 consonants out of 21 consonants will be \[{}^{21}{{C}_{4}}=\dfrac{21!}{4!\times 17!}=5985\] ways.
The number of choices for 2 vowels out of 5 vowels will be \[{}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10\] ways.
Total will be $5985\times 10=59850$.
Therefore, the number of ways 4 consonants and 2 vowels can be selected in the English alphabet consisting of 21 consonants and 5 vowels is 59850.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. There is no need for permutation of the selected alphabets. The problem is about choosing the alphabets only while permutation is used for arrangement of things.
Complete step-by-step solution:
There are in total 21 consonants and 5 vowels out of which we need to select 4 consonants and 2 vowels. The notion of choosing r objects out of n objects is denoted by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
The number of choices for 4 consonants out of 21 consonants will be \[{}^{21}{{C}_{4}}=\dfrac{21!}{4!\times 17!}=5985\] ways.
The number of choices for 2 vowels out of 5 vowels will be \[{}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10\] ways.
Total will be $5985\times 10=59850$.
Therefore, the number of ways 4 consonants and 2 vowels can be selected in the English alphabet consisting of 21 consonants and 5 vowels is 59850.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. There is no need for permutation of the selected alphabets. The problem is about choosing the alphabets only while permutation is used for arrangement of things.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE