Answer
Verified
497.4k+ views
Hint: In this question we need to find the number of ways in which the given number can be resolved into two factors. So, firstly we would be doing prime factorization of the given number and then use the formula for the same to resolve it into two factors. This would help us find the answer.
Complete step-by-step answer:
We have been given the number 7056. Now, if we do the prime factorization of the number we get,
$7056 = {2^4} \times {3^2} \times {7^2}$
So, the given number is of form ${a^p}{b^q}{c^r}.....$where a, b, c…. are prime numbers and p, q, r…. are all even numbers.
So, we can resolve the number into two factors in $\dfrac{1}{2}\left[ {\left( {p + 1} \right)\left( {q + 1} \right)\left( {r + 1} \right)....... + 1} \right]$ ways.
So, the number of ways in which the given number can be resolved into two factors is $\dfrac{1}{2}\left[ {\left( {4 + 1} \right)\left( {2 + 1} \right)\left( {2 + 1} \right) + 1} \right]$
$ = \dfrac{1}{2}\left[ {5 \times 3 \times 3 + 1} \right]$
$ = \dfrac{{46}}{2}$
$ = 23$
Hence 7056 can be resolved into two factors in 23 ways.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over permutation and combinations. In these questions we should always find the prime factorization of the number and then use the formulas like given above. This helps in getting us the required condition and gets us on the right track to reach the answer.
Complete step-by-step answer:
We have been given the number 7056. Now, if we do the prime factorization of the number we get,
$7056 = {2^4} \times {3^2} \times {7^2}$
So, the given number is of form ${a^p}{b^q}{c^r}.....$where a, b, c…. are prime numbers and p, q, r…. are all even numbers.
So, we can resolve the number into two factors in $\dfrac{1}{2}\left[ {\left( {p + 1} \right)\left( {q + 1} \right)\left( {r + 1} \right)....... + 1} \right]$ ways.
So, the number of ways in which the given number can be resolved into two factors is $\dfrac{1}{2}\left[ {\left( {4 + 1} \right)\left( {2 + 1} \right)\left( {2 + 1} \right) + 1} \right]$
$ = \dfrac{1}{2}\left[ {5 \times 3 \times 3 + 1} \right]$
$ = \dfrac{{46}}{2}$
$ = 23$
Hence 7056 can be resolved into two factors in 23 ways.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over permutation and combinations. In these questions we should always find the prime factorization of the number and then use the formulas like given above. This helps in getting us the required condition and gets us on the right track to reach the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE