Answer
Verified
459.3k+ views
Hint: The molecule ${{N}_{2}}{{H}_{4}}$ is called hydrazine. From drawing the Lewis structure of ${{N}_{2}}{{H}_{4}}$, we could identify that each nitrogen atom is $s{{p}^{3}}$ hybridized and uses two $s{{p}^{3}}$ orbitals to form N–H bonds and hydrogen has only one electron in its 1s orbital.
Complete step by step solution:
- Hydrazine is a colourless liquid with an ammoniacal odour and the hydrazine is miscible with water in all proportions. Also, its aqueous solutions are highly alkaline in nature.
- In order to get an idea of overlapping present between N-H bonds in ${{N}_{2}}{{H}_{4}}$ molecules, we need to look at the concept of hybridization. It is the process in which the overlap of bonding orbitals takes place and as a result, the formation of stronger bonds occur. Using the model of hybridization we would be able to predict the shapes of certain molecules.
- In hybridization, the atomic orbitals which have similar energy but not equivalent are combined mathematically in such a way to produce sets of equivalent orbitals which are properly oriented to form bonds. Since they are produced by hybridizing two or more atomic orbitals from the same atom, these new combinations are called hybrid atomic orbitals.
- The Lewis structure of ${{N}_{2}}{{H}_{4}}$ molecule is given below
- From the Lewis structure it’s clear that every nitrogen atom has one lone pair of electrons and is bonded to three other atoms including two hydrogens and one nitrogen atom.
- As we know the Steric Number is the sum of the number of lone electron pairs on the central atom and number of atoms bonded to the central atom. So the steric number for nitrogen is $4(3+1)$. This implies that four hybrid orbitals are needed by every nitrogen atom and this is possible only through $s{{p}^{3}}$ hybridization.
- Since hydrogen has only one s orbital, it has an s overlapping. Thus the overlapping present between N-H bonds in hydrazine will be $s{{p}^{3}}-s$.
Thus the answer is option (C). $s{{p}^{3}}-s$.
Note: It should be noted that the bond between nitrogen atoms in hydrazine is single, not a triple bond. It’s because we only have one p-orbital per nitrogen atom that is available to form a pi-bond, and in order to form two pi-bonds, we need at least two p-orbitals per each nitrogen atom to be available as in the case of acetylene.
Complete step by step solution:
- Hydrazine is a colourless liquid with an ammoniacal odour and the hydrazine is miscible with water in all proportions. Also, its aqueous solutions are highly alkaline in nature.
- In order to get an idea of overlapping present between N-H bonds in ${{N}_{2}}{{H}_{4}}$ molecules, we need to look at the concept of hybridization. It is the process in which the overlap of bonding orbitals takes place and as a result, the formation of stronger bonds occur. Using the model of hybridization we would be able to predict the shapes of certain molecules.
- In hybridization, the atomic orbitals which have similar energy but not equivalent are combined mathematically in such a way to produce sets of equivalent orbitals which are properly oriented to form bonds. Since they are produced by hybridizing two or more atomic orbitals from the same atom, these new combinations are called hybrid atomic orbitals.
- The Lewis structure of ${{N}_{2}}{{H}_{4}}$ molecule is given below
- From the Lewis structure it’s clear that every nitrogen atom has one lone pair of electrons and is bonded to three other atoms including two hydrogens and one nitrogen atom.
- As we know the Steric Number is the sum of the number of lone electron pairs on the central atom and number of atoms bonded to the central atom. So the steric number for nitrogen is $4(3+1)$. This implies that four hybrid orbitals are needed by every nitrogen atom and this is possible only through $s{{p}^{3}}$ hybridization.
- Since hydrogen has only one s orbital, it has an s overlapping. Thus the overlapping present between N-H bonds in hydrazine will be $s{{p}^{3}}-s$.
Thus the answer is option (C). $s{{p}^{3}}-s$.
Note: It should be noted that the bond between nitrogen atoms in hydrazine is single, not a triple bond. It’s because we only have one p-orbital per nitrogen atom that is available to form a pi-bond, and in order to form two pi-bonds, we need at least two p-orbitals per each nitrogen atom to be available as in the case of acetylene.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers