Answer
Verified
469.8k+ views
Hint: PQRS is a quadrilateral. The property of quadrilateral says that the sum of any two angles is 180 . All the internal angles of a quadrilateral sum up to ${360^ \circ }$. In this question first we have to find the value of angle Q then we simply can't get the ratio of angle R and angle Q.
Complete step-by-step answer:
We known that \[\angle R + \angle Q = {180^ \circ }\]
And we have the value of angle R is given $\angle R = {60^ \circ }$
Simply put the value of angle R
= ${60^ \circ } + \angle Q = {180^ \circ }$
= $\angle Q = {180^ \circ } - {60^ \circ }$
= $\angle Q = {120^ \circ }$
Now we have the value of angle Q
We can easily find the ratio of angle R and angle Q
For finding the ratio just do $\dfrac{{\angle R}}{{\angle Q}}$
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{{60}}{{120}}$
By canceling the denominator and numerator we get
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{1}{2}$
Here we get ratio of angle R and angle Q is 1:2
Note: Quadrilateral just means “four side”. A quadrilateral has four sides, it has two dimensional, closed and has straight sides. All the internal angles of a quadrilateral sum up to ${360^ \circ }$. And the most important point is opposite angles are equal and opposite sides are equal and parallel. In quadrilateral sum of any two adjuacent angles is $180$. In quadrilateral if one angle is the right angle then all the angles are the right angle and the diagonals of a parallelogram bisect each other. According to the angle sum property of a quadrilateral, the sum of all the four interior angles is equal to ${360^ \circ }$.
Complete step-by-step answer:
We known that \[\angle R + \angle Q = {180^ \circ }\]
And we have the value of angle R is given $\angle R = {60^ \circ }$
Simply put the value of angle R
= ${60^ \circ } + \angle Q = {180^ \circ }$
= $\angle Q = {180^ \circ } - {60^ \circ }$
= $\angle Q = {120^ \circ }$
Now we have the value of angle Q
We can easily find the ratio of angle R and angle Q
For finding the ratio just do $\dfrac{{\angle R}}{{\angle Q}}$
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{{60}}{{120}}$
By canceling the denominator and numerator we get
= $\dfrac{{\angle R}}{{\angle Q}}$$ = \dfrac{1}{2}$
Here we get ratio of angle R and angle Q is 1:2
Note: Quadrilateral just means “four side”. A quadrilateral has four sides, it has two dimensional, closed and has straight sides. All the internal angles of a quadrilateral sum up to ${360^ \circ }$. And the most important point is opposite angles are equal and opposite sides are equal and parallel. In quadrilateral sum of any two adjuacent angles is $180$. In quadrilateral if one angle is the right angle then all the angles are the right angle and the diagonals of a parallelogram bisect each other. According to the angle sum property of a quadrilateral, the sum of all the four interior angles is equal to ${360^ \circ }$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE