Answer
Verified
459k+ views
Hint: First we have to plot the given points into a graph. Because we must know the distance between all the four pairs of points. Then we will start with the use of the distance formula to find the distance between all the four pairs of the points. After calculating the vertex of the point $D$ then we will find the area of the square $ABCD$.
Formula used: Distance between points formula $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Where $\left( {{x_1},{x_2}} \right)$ and $\left( {{y_1},{y_2}} \right)$ be the two points.
Area of the square $ = $ $side \times side$ unit sq.
Complete step-by-step answer:
Given points are $A = (3,4)$, $B = ( - 2,4)$, and $C = ( - 2, - 1)$
By plotting the points into graph we get,
First we have to find the fourth vertex $D$ and the area of the given square $ABCD$.
In the square $ABCD$, we know all the sides are equal thus, the distance of each of the vertices are same
Hence we can write,
$AB = BC = CD = DA$
The points plotted on the graph below.
From the graph, the coordinates of point $D$ are $(3, - 1)$
Hence,
Now using the distance formula $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} ......(1)$
Using equation $(1)$ we can find out the side $AB$, so it will be
Here, $A = (3,4)$ where ${x_1} = 3,{y_1} = 4$ and $B = ( - 2,4)$ where ${x_2} = - 2,{y_2} = 4$
$\Rightarrow$$AB = \sqrt {{{( - 2 - 3)}^2} + {{(4 - 4)}^2}} $ $ = \sqrt {{{( - 5)}^2} + {0^2}} $$ = \sqrt {( - 5)( - 5) + 0} $$ = \sqrt {25} $$ = 5$ Units
Here,
$B = ( - 2,4)$ where ${x_1} = - 2$, ${y_1} = 4$ and
$C = ( - 2, - 1)$ where ${x_2} = - 2,{y_2} = - 1$
$\Rightarrow$$BC = \sqrt {{{( - 2 - ( - 2))}^2} + {{( - 1 - 4)}^2}} $$ = \sqrt {0 + {{( - 5)}^2}} = \sqrt {25} = 5$ Units
Now,
$C = ( - 2, - 1)$ where ${x_1} = - 2,{y_1} = - 1$ and
$D = (3, - 1)$ where ${x_2} = 3,{y_2} = - 1$
$\Rightarrow$$CD = \sqrt {{{(3 - ( - 2))}^2} + {{( - 1 - ( - 1))}^2}} = \sqrt {{5^2} + {0^2}} $$ = \sqrt {25} = 5$ Units
Now,
$D = (3, - 1)$where ${x_1} = 3,{y_1} = - 1$ and
$A = (3,4)$where ${x_2} = 3,{y_2} = 4$
$\Rightarrow$$DA = \sqrt {{{(3 - 3)}^2} + {{( - 1 - 4)}^2}} = \sqrt {{0^2} + {{( - 5)}^2}} = \sqrt {25} = 5$ Units
$D$ are $(3, - 1)$
Here we got the side $AB = 5$ unit sq.
Area of the square $ = $ side ×side
Area of the square $ABCD = AB \times AB$
Substituting the side value,
$ \Rightarrow 5 \times 5$
Multiplying both the numbers, we get
Hence,
Area of the square \[ABCD = 25\] Unit sq.
$\therefore $ The area of the square is $25$ unit sq.
Note: Whenever we face such types of problems the key behind the solution lies in the diagrammatic representation of the data provided then awareness about the basic formula can help in getting to the right track to reach the answer.
Formula used: Distance between points formula $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Where $\left( {{x_1},{x_2}} \right)$ and $\left( {{y_1},{y_2}} \right)$ be the two points.
Area of the square $ = $ $side \times side$ unit sq.
Complete step-by-step answer:
Given points are $A = (3,4)$, $B = ( - 2,4)$, and $C = ( - 2, - 1)$
By plotting the points into graph we get,
First we have to find the fourth vertex $D$ and the area of the given square $ABCD$.
In the square $ABCD$, we know all the sides are equal thus, the distance of each of the vertices are same
Hence we can write,
$AB = BC = CD = DA$
The points plotted on the graph below.
From the graph, the coordinates of point $D$ are $(3, - 1)$
Hence,
Now using the distance formula $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} ......(1)$
Using equation $(1)$ we can find out the side $AB$, so it will be
Here, $A = (3,4)$ where ${x_1} = 3,{y_1} = 4$ and $B = ( - 2,4)$ where ${x_2} = - 2,{y_2} = 4$
$\Rightarrow$$AB = \sqrt {{{( - 2 - 3)}^2} + {{(4 - 4)}^2}} $ $ = \sqrt {{{( - 5)}^2} + {0^2}} $$ = \sqrt {( - 5)( - 5) + 0} $$ = \sqrt {25} $$ = 5$ Units
Here,
$B = ( - 2,4)$ where ${x_1} = - 2$, ${y_1} = 4$ and
$C = ( - 2, - 1)$ where ${x_2} = - 2,{y_2} = - 1$
$\Rightarrow$$BC = \sqrt {{{( - 2 - ( - 2))}^2} + {{( - 1 - 4)}^2}} $$ = \sqrt {0 + {{( - 5)}^2}} = \sqrt {25} = 5$ Units
Now,
$C = ( - 2, - 1)$ where ${x_1} = - 2,{y_1} = - 1$ and
$D = (3, - 1)$ where ${x_2} = 3,{y_2} = - 1$
$\Rightarrow$$CD = \sqrt {{{(3 - ( - 2))}^2} + {{( - 1 - ( - 1))}^2}} = \sqrt {{5^2} + {0^2}} $$ = \sqrt {25} = 5$ Units
Now,
$D = (3, - 1)$where ${x_1} = 3,{y_1} = - 1$ and
$A = (3,4)$where ${x_2} = 3,{y_2} = 4$
$\Rightarrow$$DA = \sqrt {{{(3 - 3)}^2} + {{( - 1 - 4)}^2}} = \sqrt {{0^2} + {{( - 5)}^2}} = \sqrt {25} = 5$ Units
$D$ are $(3, - 1)$
Here we got the side $AB = 5$ unit sq.
Area of the square $ = $ side ×side
Area of the square $ABCD = AB \times AB$
Substituting the side value,
$ \Rightarrow 5 \times 5$
Multiplying both the numbers, we get
Hence,
Area of the square \[ABCD = 25\] Unit sq.
$\therefore $ The area of the square is $25$ unit sq.
Note: Whenever we face such types of problems the key behind the solution lies in the diagrammatic representation of the data provided then awareness about the basic formula can help in getting to the right track to reach the answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE