In the adjoining figure D is a point on BC such that, ∠ABD = ∠CAD. If AB = 5cm, AD = 4cm and AC = 3cm. Find A (∆ACD) : A (∆BCA).
Answer
Verified
509.7k+ views
Hint: Visualizing the given data in the question draws an appropriate figure. According to the properties of triangles, observe similarities between the two triangles in order to establish a relation between their angles or sides.
Complete step-by-step answer:
Given data,
∠ABD = ∠CAD. AB = 5cm, AD = 4cm and AC = 3cm.
Let us compare ∆ABC and ∆CAD
∠ABD = ∠CAD (given)
∠ACB = ∠ACD (common angle, from the figure)
The Third Angle theorem states, if two angles of a triangle are congruent to two angles in another triangle, then the third pair of angles are also congruent.
Hence, the third angles of ∆ABC and ∆CAD are congruent
⟹∠CAB = ∠CDA
Using AAA rule, we can say, ∆ABC ~ ∆CAD
(AAA rule, which states if 3 angles are congruent between two triangles then the triangles are similar i.e. of the same shape which typically means the ratio of their areas, ratios of corresponding angles are equal)
Also, the ratio of areas of similar triangles is equal to the ratio of squares of corresponding sides.
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{{\text{A}}{{\text{D}}^2}}}{{{\text{A}}{{\text{B}}^2}}}$
From given AD = 4cm, AB = 5 cm
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{{4^2}}}{{{5^2}}}$
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{16}}{{25}}$
Note: In order to solve these types of questions the key is to make a precise figure which depicts all the given data. Then observe for similarities using properties of triangles. Keep in mind the AAA rule only states that the triangles are similar, they may or may not be congruent.
Complete step-by-step answer:
Given data,
∠ABD = ∠CAD. AB = 5cm, AD = 4cm and AC = 3cm.
Let us compare ∆ABC and ∆CAD
∠ABD = ∠CAD (given)
∠ACB = ∠ACD (common angle, from the figure)
The Third Angle theorem states, if two angles of a triangle are congruent to two angles in another triangle, then the third pair of angles are also congruent.
Hence, the third angles of ∆ABC and ∆CAD are congruent
⟹∠CAB = ∠CDA
Using AAA rule, we can say, ∆ABC ~ ∆CAD
(AAA rule, which states if 3 angles are congruent between two triangles then the triangles are similar i.e. of the same shape which typically means the ratio of their areas, ratios of corresponding angles are equal)
Also, the ratio of areas of similar triangles is equal to the ratio of squares of corresponding sides.
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{{\text{A}}{{\text{D}}^2}}}{{{\text{A}}{{\text{B}}^2}}}$
From given AD = 4cm, AB = 5 cm
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{{4^2}}}{{{5^2}}}$
⟹ $\dfrac{{{\text{A}}\left( {\Delta {\text{ACD}}} \right)}}{{{\text{A}}\left( {\Delta {\text{BCA}}} \right)}} = {\text{ }}\dfrac{{16}}{{25}}$
Note: In order to solve these types of questions the key is to make a precise figure which depicts all the given data. Then observe for similarities using properties of triangles. Keep in mind the AAA rule only states that the triangles are similar, they may or may not be congruent.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE