Answer
Verified
460.8k+ views
Hint: In series combination for capacitors the charge on each capacitor is the same. The total voltage in a series combination for voltage source is the sum of individual voltages. On closing the switch the capacitors begin to charge and then acquire equilibrium state.
Complete step by step answer:
A capacitor is an electrically passive device that is used to store electrical energy.
In the given circuit, the voltage sources are in series. Hence, the equivalent voltage for the circuit will be the sum of the individual voltages.
Hence, ${V_{total}} = {V_1} + {V_2}$ -------🡪 (here, ${V_{total}}$ is the equivalent voltage for the circuit)
For the given circuit, ${V_1},{V_2}$ are 12V and 6V respectively.
Thus, equivalent voltage= ${V_{total}} = 12 + 6 = 18V$-------- 🡪(equation 1)
Also, the capacitors ${C_1}$ and ${C_2}$ are in series, hence, equivalent capacitance of the circuit is given by;
$\dfrac{1}{{{C_{eq}}}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}}$ -------------🡪 (series combination of capacitors)
And, ${C_1} = 4\mu F$, ${C_2} = 8\mu F$----------🡪 (given)
Hence,
$\Rightarrow \dfrac{1}{{{C_{eq}}}} = \dfrac{1}{4} + \dfrac{1}{8}$ ------- 🡪(substituting the values in the formula)
$ = \dfrac{{8 + 4}}{{32}}$
Thus, ${C_{eq}} = \dfrac{{32}}{{12}}$
$\Rightarrow {C_{eq}} = \dfrac{8}{3}$--------------🡪 (equation 2)
Also, we know that, the charge stored in a capacitor is given by,
$Q = CV$-------------- 🡪(here, C is the capacitance, V is the voltage)
Thus, ${Q_{eq}} = {C_{eq}} \times {V_{total}}$
$\Rightarrow {Q_{eq}} = \dfrac{8}{3} \times 18 = 8 \times 6$
Hence,${Q_{eq}} = 48\mu C$.
Also, the capacitors are in series, so the charge in each capacitor is the same.
Thus, ${Q_{eq}} = {Q_1} = {Q_2}$ ---------- 🡪(property of capacitors in series)
Hence, voltage across ${C_1}$ is ${V_1} = \dfrac{{{Q_1}}}{{{C_1}}}$------- 🡪(here, ${Q_1} = {Q_{eq}}$ and ${C_1} = 4\mu F$)
$\Rightarrow {V_1} = \dfrac{{48}}{4} = 12V$
Similarly for voltage across${C_2}$, ${V_2} = \dfrac{{{Q_2}}}{{{C_2}}}$ --------- 🡪(here, ${Q_2} = {Q_{eq}}$ and ${C_2} = 8\mu F$)
$\Rightarrow {V_2} = \dfrac{{48}}{8} = 6V$
Hence, the two capacitors have the same charge. Therefore, option B is correct.
Note:
In series combination the voltage across individual elements is different but the current is the same, hence, the charge is the same.
In parallel combination, the voltage is the same across all elements but the current is different and so is the charge.
Equivalent capacitance for series =$\dfrac{1}{{{C_{eq}}}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + ............$
Equivalent capacitance for parallel = ${C_{eq}} = {C_1} + {C_2} + {C_3} + ............$
Complete step by step answer:
A capacitor is an electrically passive device that is used to store electrical energy.
In the given circuit, the voltage sources are in series. Hence, the equivalent voltage for the circuit will be the sum of the individual voltages.
Hence, ${V_{total}} = {V_1} + {V_2}$ -------🡪 (here, ${V_{total}}$ is the equivalent voltage for the circuit)
For the given circuit, ${V_1},{V_2}$ are 12V and 6V respectively.
Thus, equivalent voltage= ${V_{total}} = 12 + 6 = 18V$-------- 🡪(equation 1)
Also, the capacitors ${C_1}$ and ${C_2}$ are in series, hence, equivalent capacitance of the circuit is given by;
$\dfrac{1}{{{C_{eq}}}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}}$ -------------🡪 (series combination of capacitors)
And, ${C_1} = 4\mu F$, ${C_2} = 8\mu F$----------🡪 (given)
Hence,
$\Rightarrow \dfrac{1}{{{C_{eq}}}} = \dfrac{1}{4} + \dfrac{1}{8}$ ------- 🡪(substituting the values in the formula)
$ = \dfrac{{8 + 4}}{{32}}$
Thus, ${C_{eq}} = \dfrac{{32}}{{12}}$
$\Rightarrow {C_{eq}} = \dfrac{8}{3}$--------------🡪 (equation 2)
Also, we know that, the charge stored in a capacitor is given by,
$Q = CV$-------------- 🡪(here, C is the capacitance, V is the voltage)
Thus, ${Q_{eq}} = {C_{eq}} \times {V_{total}}$
$\Rightarrow {Q_{eq}} = \dfrac{8}{3} \times 18 = 8 \times 6$
Hence,${Q_{eq}} = 48\mu C$.
Also, the capacitors are in series, so the charge in each capacitor is the same.
Thus, ${Q_{eq}} = {Q_1} = {Q_2}$ ---------- 🡪(property of capacitors in series)
Hence, voltage across ${C_1}$ is ${V_1} = \dfrac{{{Q_1}}}{{{C_1}}}$------- 🡪(here, ${Q_1} = {Q_{eq}}$ and ${C_1} = 4\mu F$)
$\Rightarrow {V_1} = \dfrac{{48}}{4} = 12V$
Similarly for voltage across${C_2}$, ${V_2} = \dfrac{{{Q_2}}}{{{C_2}}}$ --------- 🡪(here, ${Q_2} = {Q_{eq}}$ and ${C_2} = 8\mu F$)
$\Rightarrow {V_2} = \dfrac{{48}}{8} = 6V$
Hence, the two capacitors have the same charge. Therefore, option B is correct.
Note:
In series combination the voltage across individual elements is different but the current is the same, hence, the charge is the same.
In parallel combination, the voltage is the same across all elements but the current is different and so is the charge.
Equivalent capacitance for series =$\dfrac{1}{{{C_{eq}}}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + ............$
Equivalent capacitance for parallel = ${C_{eq}} = {C_1} + {C_2} + {C_3} + ............$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE