In the cross AaBBcc
aaBbCc, what is the probability of an offspring that is aaBbcc?
(a) 1/2
(b) 1/4
(c) 1/8
(d) 1/16
Answer
Verified
476.7k+ views
Hint: In a trihybrid cross, each gamete gets one of the alleles from each parent. Hence, we perform such crosses in punnett squares. Trihybrid cross follows all the laws given by Mendel i.e. law of segregation of gametes, law of dominance and law of independent assortment.
Complete answer:
Here, let us break down the given problem into small parts. First, we will consider a cross between Aa and aa. We will look for priority of getting a homozygous individual (since we want the final genotype to be aaBbcc.)
So, the probability of getting a homozygote (aa) is 2/4 i.e. 1/2.
Similarly, let us look into the cross between BB and Bb.
So, the probability of getting a heterozygote (Bb) is 2/4 i.e. 1/2.
Last part of the given genotype-aaBbcc is ‘cc’. Now, let us look into a cross between parental parts cc and Cc.
So, the probability of getting a homozygote (cc) is 2/4 i.e. 1/2.
In order to get all of them happening together, we will now reduce the overall chance for each genotype. So, we will multiply all three probabilities as - \[\frac{1}{2}{\text{ }} \times \frac{1}{2} \times \frac{1}{2}{\text{ = }}\frac{1}{8}\]
So, the correct answer is ‘1/8.’
Note: Traditional method of solving this problem can be by using the punnett square. So, if we look into the punnett square of a normal trihybrid cross, we can get the probability by looking into the genotype.
Complete answer:
Here, let us break down the given problem into small parts. First, we will consider a cross between Aa and aa. We will look for priority of getting a homozygous individual (since we want the final genotype to be aaBbcc.)
A | a | |
a | AaHeterozygote | aaHomozygote |
a | AaHeterozygote | aaHomozygote |
So, the probability of getting a homozygote (aa) is 2/4 i.e. 1/2.
Similarly, let us look into the cross between BB and Bb.
B | B | |
B | BBHomozygote | BBHomozygote |
b | BbHeterozygote | BbHeterozygote |
So, the probability of getting a heterozygote (Bb) is 2/4 i.e. 1/2.
Last part of the given genotype-aaBbcc is ‘cc’. Now, let us look into a cross between parental parts cc and Cc.
C | c | |
c | CcHeterozygote | ccHomozygote |
c | CcHeterozygote | ccHomozygote |
So, the probability of getting a homozygote (cc) is 2/4 i.e. 1/2.
In order to get all of them happening together, we will now reduce the overall chance for each genotype. So, we will multiply all three probabilities as - \[\frac{1}{2}{\text{ }} \times \frac{1}{2} \times \frac{1}{2}{\text{ = }}\frac{1}{8}\]
So, the correct answer is ‘1/8.’
Note: Traditional method of solving this problem can be by using the punnett square. So, if we look into the punnett square of a normal trihybrid cross, we can get the probability by looking into the genotype.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light