Answer
Verified
493.5k+ views
Hint: Here we can see that $\left( x,y \right)$ are given in terms of another variable t. Which is making it dependent on both x and y, and point (2, -1) is given on the curve of $\left( x,y \right)$. So, first find out that common t which will validate that point on the $\left( x,y \right)$ curve, then proceed for the tangent in which first we have to find the slope, then the equation of that tangent.
Complete step by step answer:
So, as required t for the point (2, -1).
Go, with the given equations $x={{t}^{2}}+3t-8,y=2{{t}^{2}}-2t-5$.
Put $\left( x,y \right)=\left( 2,-1 \right)$ in the equations,
For the x = 2,
$2={{t}^{2}}+3t-8........\left( 1 \right)$
Root of quadratic equation (1) using formula
$\begin{align}
& t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& t=\dfrac{-3\pm \sqrt{9-4\times 1\times \left( -10 \right)}}{2\times 1} \\
& t=\dfrac{-3\pm \sqrt{49}}{2}=\dfrac{-3\pm 7}{2} \\
& t=2,-5 \\
\end{align}$
Same for y = -1,
$-1=2{{t}^{2}}-2t-5.........\left( 2 \right)$
Root of quadratic equation (2) using formula
$\begin{align}
& t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& t=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 2\times \left( -4 \right)}}{2\times 2} \\
& t=\dfrac{2\pm \sqrt{36}}{4}=\dfrac{2\pm 6}{4} \\
& t=2,-1 \\
\end{align}$
Now, we can see t = 2 is common for x = 2 and y = -1.
Now we have to find the slope of the tangent on point (2, -1).
$Slope=\dfrac{dy}{dx}$ for any tangent on the curve.
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]
And we know $\dfrac{dy}{dt}=4t-2\ and\ \dfrac{dx}{dt}=2t+3$.
For the t = 2,
$\dfrac{dy}{dx}=\dfrac{4t-2\ }{2t+3}=\dfrac{4\times 2-2}{2\times 2+3}=\dfrac{6}{7}$
Now, the equation of tangent on (2, -1)
$\begin{align}
& \left( y-\left( -1 \right) \right)=\dfrac{6}{7}\left( x-2 \right) \\
& \left( y+1 \right)=\dfrac{6}{7}\left( x-2 \right)...............\left( 3 \right) \\
\end{align}$
Now, using equation (3) , find the intersection point on x – axis.
So, put y = 0 in equation (3)
$\begin{align}
& \left( 0+1 \right)=\dfrac{6}{7}\left( x-2 \right) \\
& x=\dfrac{19}{6} \\
\end{align}$
The Intersection point is $\left( \dfrac{19}{6},0 \right)$ .
So, length of tangent is equal to distance between $\left( \dfrac{19}{6},0 \right)$ and (2, -1).
Length of tangent $=\sqrt{{{\left( \dfrac{19}{6}-2 \right)}^{2}}+{{\left( 0-\left( -1 \right) \right)}^{2}}}$
$=\sqrt{\dfrac{85}{36}}=\dfrac{\sqrt{85}}{6}$
And the length of subtangent is the projection of tangent on the x – axis.
Length of Subtangent $=\left( \dfrac{19}{6}-2 \right)$
Length of Sub-tangent $=\dfrac{7}{6}$
Now, check with the given options, and we can say option (a), (b) and (c) are correct answers.
Note: In this problem we can easily go with a graphical method. When we know the slope and point of the tangent, the graphical method is easy to understand and visualise. But in this problem we can go with formula and basic knowledge to save time.
Complete step by step answer:
So, as required t for the point (2, -1).
Go, with the given equations $x={{t}^{2}}+3t-8,y=2{{t}^{2}}-2t-5$.
Put $\left( x,y \right)=\left( 2,-1 \right)$ in the equations,
For the x = 2,
$2={{t}^{2}}+3t-8........\left( 1 \right)$
Root of quadratic equation (1) using formula
$\begin{align}
& t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& t=\dfrac{-3\pm \sqrt{9-4\times 1\times \left( -10 \right)}}{2\times 1} \\
& t=\dfrac{-3\pm \sqrt{49}}{2}=\dfrac{-3\pm 7}{2} \\
& t=2,-5 \\
\end{align}$
Same for y = -1,
$-1=2{{t}^{2}}-2t-5.........\left( 2 \right)$
Root of quadratic equation (2) using formula
$\begin{align}
& t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& t=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 2\times \left( -4 \right)}}{2\times 2} \\
& t=\dfrac{2\pm \sqrt{36}}{4}=\dfrac{2\pm 6}{4} \\
& t=2,-1 \\
\end{align}$
Now, we can see t = 2 is common for x = 2 and y = -1.
Now we have to find the slope of the tangent on point (2, -1).
$Slope=\dfrac{dy}{dx}$ for any tangent on the curve.
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]
And we know $\dfrac{dy}{dt}=4t-2\ and\ \dfrac{dx}{dt}=2t+3$.
For the t = 2,
$\dfrac{dy}{dx}=\dfrac{4t-2\ }{2t+3}=\dfrac{4\times 2-2}{2\times 2+3}=\dfrac{6}{7}$
Now, the equation of tangent on (2, -1)
$\begin{align}
& \left( y-\left( -1 \right) \right)=\dfrac{6}{7}\left( x-2 \right) \\
& \left( y+1 \right)=\dfrac{6}{7}\left( x-2 \right)...............\left( 3 \right) \\
\end{align}$
Now, using equation (3) , find the intersection point on x – axis.
So, put y = 0 in equation (3)
$\begin{align}
& \left( 0+1 \right)=\dfrac{6}{7}\left( x-2 \right) \\
& x=\dfrac{19}{6} \\
\end{align}$
The Intersection point is $\left( \dfrac{19}{6},0 \right)$ .
So, length of tangent is equal to distance between $\left( \dfrac{19}{6},0 \right)$ and (2, -1).
Length of tangent $=\sqrt{{{\left( \dfrac{19}{6}-2 \right)}^{2}}+{{\left( 0-\left( -1 \right) \right)}^{2}}}$
$=\sqrt{\dfrac{85}{36}}=\dfrac{\sqrt{85}}{6}$
And the length of subtangent is the projection of tangent on the x – axis.
Length of Subtangent $=\left( \dfrac{19}{6}-2 \right)$
Length of Sub-tangent $=\dfrac{7}{6}$
Now, check with the given options, and we can say option (a), (b) and (c) are correct answers.
Note: In this problem we can easily go with a graphical method. When we know the slope and point of the tangent, the graphical method is easy to understand and visualise. But in this problem we can go with formula and basic knowledge to save time.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE