Answer
Verified
453.3k+ views
Hint Percentage error can be given as the error divided by the true or used value (usually the mean value) multiplied by one hundred per cent. We need to derive an expression for error in $ g $ as a function of error in $ L $ , and $ T $ .
Formula used: In this solution we will be using the following formula;
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ T $ is the period, $ L $ is the length, $ g $ is the acceleration due to gravity.
$ \Rightarrow P.{E_v} = \dfrac{{\Delta V}}{V} \times 100\% $ , where $ V $ is a variable, $ \Delta V $ is the error in the variable, and $ P.{E_v} $ is the percentage error of the variable
Complete step by step answer
From the question, we have that
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ T $ is the period, $ L $ is the length, $ g $ is the acceleration due to gravity. We are to look for the percentage error in the determination of $ g $ based on the error in the measurement of the period $ T $ and length $ L $ .
First, we must make $ g $ subject of the formula.
Hence, squaring both sides we have
$ \Rightarrow {T^2} = 4{\pi ^2}\left( {\dfrac{L}{g}} \right) $ . Multiplying by both sides by $ g $ and dividing by $ {T^2} $ , we have
$ \Rightarrow g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $
From mathematical principles, it can be proven that
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $
Multiplying all through by one hundred per cent we have
$ \Rightarrow \dfrac{{\Delta g}}{g} \times 100\% = \left( {\dfrac{{\Delta L}}{L} \times 100\% + 2\dfrac{{\Delta T}}{T} \times 100\% } \right) $
From the expression of percentage error which is given by
$ \Rightarrow P.{E_v} = \dfrac{{\Delta V}}{V} \times 100\% $ , where $ V $ is a variable, $ \Delta V $ is the error in the variable, and $ P.{E_v} $ is the percentage error of the variable. We have that
$ \Rightarrow P.{E_g} = \left( {P.{E_L} + 2 \times P.{E_T}} \right) $ ,
According to the question $ P.{E_L} = 1\% $ and $ P.{E_T} = 2\% $ hence, replacing into formula above, we have
$ \Rightarrow P.{E_g} = (1\% + 2 \times 2\% ) = 5\% $ .
$ \therefore P.{E_g} = 5\% $
Hence the correct answer is option A.
Note
To avoid confusions, we shall prove that $ \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $ as follows:
Mathematically,
$ \Rightarrow dg = \dfrac{{\partial g}}{{\partial l}}dl + \dfrac{{\partial g}}{{\partial T}}dT $
Hence, from $ g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $ , differentiating $ g $ we have,
$ \Rightarrow dg = \dfrac{{4{\pi ^2}}}{{{T^2}}}dl + \left( { - 2\dfrac{{4{\pi ^2}}}{{{T^3}}}dT} \right) $ , factorising out $ 4{\pi ^2} $ , we have
$ \Rightarrow dg = 4{\pi ^2}\left[ {\dfrac{1}{{{T^2}}}dl + \left( { - 2\dfrac{L}{{{T^3}}}dT} \right)} \right] $
Now, observe from $ g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $ that
$ \Rightarrow \dfrac{1}{{{T^2}}} = \dfrac{g}{{4{\pi ^2}L}} $ and $ \dfrac{L}{{{T^2}}} = \dfrac{g}{{4{\pi ^2}}} $ . Hence, replacing these in $ g $ , we have
$ dg = 4{\pi ^2}\left[ {\dfrac{g}{{4{\pi ^2}L}}dL + \left( { - 2\dfrac{g}{{4{\pi ^2}}}dT} \right)} \right] $ .
Dividing through by $ g $ and cancelling $ 4{\pi ^2} $
We have that
$ \Rightarrow \dfrac{{dg}}{g} = 4{\pi ^2}\left[ {\dfrac{{dL}}{L} + \left( { - 2\dfrac{{dT}}{T}} \right)} \right] $ .
Hence,
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left[ {\dfrac{{\Delta L}}{L} + \left( { - 2\dfrac{{( - \Delta T)}}{T}} \right)} \right] $ ( $ dT = - \Delta T $ because, in this case, for increase in $ \Delta g $ there’s a corresponding decrease in $ \Delta T $ as obvious in the expression for $ g $ )
Hence, finally,
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $ .
Formula used: In this solution we will be using the following formula;
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ T $ is the period, $ L $ is the length, $ g $ is the acceleration due to gravity.
$ \Rightarrow P.{E_v} = \dfrac{{\Delta V}}{V} \times 100\% $ , where $ V $ is a variable, $ \Delta V $ is the error in the variable, and $ P.{E_v} $ is the percentage error of the variable
Complete step by step answer
From the question, we have that
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ T $ is the period, $ L $ is the length, $ g $ is the acceleration due to gravity. We are to look for the percentage error in the determination of $ g $ based on the error in the measurement of the period $ T $ and length $ L $ .
First, we must make $ g $ subject of the formula.
Hence, squaring both sides we have
$ \Rightarrow {T^2} = 4{\pi ^2}\left( {\dfrac{L}{g}} \right) $ . Multiplying by both sides by $ g $ and dividing by $ {T^2} $ , we have
$ \Rightarrow g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $
From mathematical principles, it can be proven that
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $
Multiplying all through by one hundred per cent we have
$ \Rightarrow \dfrac{{\Delta g}}{g} \times 100\% = \left( {\dfrac{{\Delta L}}{L} \times 100\% + 2\dfrac{{\Delta T}}{T} \times 100\% } \right) $
From the expression of percentage error which is given by
$ \Rightarrow P.{E_v} = \dfrac{{\Delta V}}{V} \times 100\% $ , where $ V $ is a variable, $ \Delta V $ is the error in the variable, and $ P.{E_v} $ is the percentage error of the variable. We have that
$ \Rightarrow P.{E_g} = \left( {P.{E_L} + 2 \times P.{E_T}} \right) $ ,
According to the question $ P.{E_L} = 1\% $ and $ P.{E_T} = 2\% $ hence, replacing into formula above, we have
$ \Rightarrow P.{E_g} = (1\% + 2 \times 2\% ) = 5\% $ .
$ \therefore P.{E_g} = 5\% $
Hence the correct answer is option A.
Note
To avoid confusions, we shall prove that $ \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $ as follows:
Mathematically,
$ \Rightarrow dg = \dfrac{{\partial g}}{{\partial l}}dl + \dfrac{{\partial g}}{{\partial T}}dT $
Hence, from $ g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $ , differentiating $ g $ we have,
$ \Rightarrow dg = \dfrac{{4{\pi ^2}}}{{{T^2}}}dl + \left( { - 2\dfrac{{4{\pi ^2}}}{{{T^3}}}dT} \right) $ , factorising out $ 4{\pi ^2} $ , we have
$ \Rightarrow dg = 4{\pi ^2}\left[ {\dfrac{1}{{{T^2}}}dl + \left( { - 2\dfrac{L}{{{T^3}}}dT} \right)} \right] $
Now, observe from $ g = 4{\pi ^2}\left( {\dfrac{L}{{{T^2}}}} \right) $ that
$ \Rightarrow \dfrac{1}{{{T^2}}} = \dfrac{g}{{4{\pi ^2}L}} $ and $ \dfrac{L}{{{T^2}}} = \dfrac{g}{{4{\pi ^2}}} $ . Hence, replacing these in $ g $ , we have
$ dg = 4{\pi ^2}\left[ {\dfrac{g}{{4{\pi ^2}L}}dL + \left( { - 2\dfrac{g}{{4{\pi ^2}}}dT} \right)} \right] $ .
Dividing through by $ g $ and cancelling $ 4{\pi ^2} $
We have that
$ \Rightarrow \dfrac{{dg}}{g} = 4{\pi ^2}\left[ {\dfrac{{dL}}{L} + \left( { - 2\dfrac{{dT}}{T}} \right)} \right] $ .
Hence,
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left[ {\dfrac{{\Delta L}}{L} + \left( { - 2\dfrac{{( - \Delta T)}}{T}} \right)} \right] $ ( $ dT = - \Delta T $ because, in this case, for increase in $ \Delta g $ there’s a corresponding decrease in $ \Delta T $ as obvious in the expression for $ g $ )
Hence, finally,
$ \Rightarrow \dfrac{{\Delta g}}{g} = \left( {\dfrac{{\Delta L}}{L} + 2\dfrac{{\Delta T}}{T}} \right) $ .
Recently Updated Pages
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
The locus of the center of circle which touches y 12 class 11 maths JEE_Main
If the two circles x 12 + y 32 r2 and x2 + y2 8x + class 11 maths JEE_Main
If one of the diameters of the circle given by the class 11 maths JEE_Main
If from any point P on the circle x2 + y2 + 1gx + 2fy class 11 maths JEE_Main
Let ABCD be a quadrilateral with area 18 with side class 11 scq JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE