Answer
Verified
398.4k+ views
Hint: Here in this question, we have to find the length of the side AD in the given rectangular diagram AD, this can be solve by applying a Pythagoras theorem i.e., \[hy{p^2} = op{p^2} + ad{j^2}\] in triangles \[\Delta DEC\], \[\Delta EAD\], and \[\Delta EBC\] then further simplify by using a basic arithmetic operation we get the required length of the side AD.
Complete step-by-step answer:
Consider the given diagram \[ABCD\] is a rectangular and point E lies on the side AB, and the given line DE and EC which have a length 3 and 4 respectively and the point E makes angle \[{90^ \circ }\].
In rectangle \[ABCD\], we found three triangles i.e., \[\Delta DEC\], \[\Delta EAD\] and \[\Delta EBC\]. E be the common point in all three triangles.
Now, consider the triangle \[\Delta DEC\] is a right-angled triangle.
In \[\Delta DEC\], \[\left| \!{\underline {
E }} \right. = {90^ \circ }\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( {DE} \right)^2} + {\left( {EC} \right)^2}\]
Given, \[DE = 3\] and \[EC = 4\], on substituting we have
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( 3 \right)^2} + {\left( 4 \right)^2}\]
\[ \Rightarrow {\left( {DC} \right)^2} = 9 + 16\]
\[ \Rightarrow {\left( {DC} \right)^2} = 25\]
Taking square root on both side, then
\[ \Rightarrow DC = \pm \sqrt {25} \]
\[ \Rightarrow DC = \pm 5\]
When, measuring the length of any shape we only consider the positive value
\[\therefore DC = 5\]
Now, consider triangle \[\Delta EAD\] is a right-angle triangle
In, \[\Delta EAD\], \[\left| \!{\underline {
A }} \right. = {90^ \circ }\]and let take \[AE = x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DE} \right)^2} = {\left( {AD} \right)^2} + {\left( {AE} \right)^2}\]
\[ \Rightarrow {\left( 3 \right)^2} = {\left( {AD} \right)^2} + {\left( x \right)^2}\]
\[ \Rightarrow 9 = {\left( {AD} \right)^2} + {x^2}\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {x^2}\]-------(1)
Now, consider triangle \[\Delta EBC\] is a right-angle triangle
In, \[\Delta EBC\], \[\left| \!{\underline {
B }} \right. = {90^ \circ }\] and
Let, \[EB = AB - AE\]
But \[AB = DC = 5\], then
\[ \Rightarrow EB = 5 - x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {EC} \right)^2} = {\left( {BC} \right)^2} + {\left( {EB} \right)^2}\]
But \[BC = AD\], then
\[ \Rightarrow {\left( 4 \right)^2} = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
On applying a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {5^2} + {x^2} - 10x\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + 25 + {x^2} - 10x\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 16 - 25 - {x^2} + 10x\]
\[ \Rightarrow {\left( {AD} \right)^2} = 10x - 9 - {x^2}\] ------(2)
From equation (1) and (2), we have
\[ \Rightarrow 9 - {x^2} = 10x - 9 - {x^2}\]
Take variable \[x\] terms in to the LHS, then
\[ \Rightarrow {x^2} - {x^2} - 10x = - 9 - 9\]
On simplification, we have
\[ \Rightarrow - 10x = - 18\]
Divide both side by -10, then we get
\[ \Rightarrow x = \dfrac{{ - 18}}{{ - 10}}\]
\[ \Rightarrow x = 1.8\]
Substitute \[x\] value in equation (1), then
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {\left( {1.8} \right)^2}\]
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - 3.24\]
\[ \Rightarrow {\left( {AD} \right)^2} = 5.76\]
Take square root on both side, we have
\[ \Rightarrow AD = \pm \sqrt {5.76} \]
\[ \Rightarrow AD = \pm 2.4\]
\[\therefore AD = 2.4\]
Hence, the length of the side \[AD = 2.4\].
Therefore, Option (A) is correct.
So, the correct answer is “Option A”.
Note: To solve rectangular based problems, remember the properties of triangle i.e., the parallel sides are equal and when triangle is right angle it‘s obey the Pythagoras theorem which stated as “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[hy{p^2} = op{p^2} + ad{j^2}\], and main thing is measurement of length of any shape should be in positive.
Complete step-by-step answer:
Consider the given diagram \[ABCD\] is a rectangular and point E lies on the side AB, and the given line DE and EC which have a length 3 and 4 respectively and the point E makes angle \[{90^ \circ }\].
In rectangle \[ABCD\], we found three triangles i.e., \[\Delta DEC\], \[\Delta EAD\] and \[\Delta EBC\]. E be the common point in all three triangles.
Now, consider the triangle \[\Delta DEC\] is a right-angled triangle.
In \[\Delta DEC\], \[\left| \!{\underline {
E }} \right. = {90^ \circ }\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( {DE} \right)^2} + {\left( {EC} \right)^2}\]
Given, \[DE = 3\] and \[EC = 4\], on substituting we have
\[ \Rightarrow {\left( {DC} \right)^2} = {\left( 3 \right)^2} + {\left( 4 \right)^2}\]
\[ \Rightarrow {\left( {DC} \right)^2} = 9 + 16\]
\[ \Rightarrow {\left( {DC} \right)^2} = 25\]
Taking square root on both side, then
\[ \Rightarrow DC = \pm \sqrt {25} \]
\[ \Rightarrow DC = \pm 5\]
When, measuring the length of any shape we only consider the positive value
\[\therefore DC = 5\]
Now, consider triangle \[\Delta EAD\] is a right-angle triangle
In, \[\Delta EAD\], \[\left| \!{\underline {
A }} \right. = {90^ \circ }\]and let take \[AE = x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {DE} \right)^2} = {\left( {AD} \right)^2} + {\left( {AE} \right)^2}\]
\[ \Rightarrow {\left( 3 \right)^2} = {\left( {AD} \right)^2} + {\left( x \right)^2}\]
\[ \Rightarrow 9 = {\left( {AD} \right)^2} + {x^2}\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {x^2}\]-------(1)
Now, consider triangle \[\Delta EBC\] is a right-angle triangle
In, \[\Delta EBC\], \[\left| \!{\underline {
B }} \right. = {90^ \circ }\] and
Let, \[EB = AB - AE\]
But \[AB = DC = 5\], then
\[ \Rightarrow EB = 5 - x\]
Then by the Pythagoras theorem
\[ \Rightarrow {\left( {EC} \right)^2} = {\left( {BC} \right)^2} + {\left( {EB} \right)^2}\]
But \[BC = AD\], then
\[ \Rightarrow {\left( 4 \right)^2} = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {\left( {5 - x} \right)^2}\]
On applying a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + {5^2} + {x^2} - 10x\]
\[ \Rightarrow 16 = {\left( {AD} \right)^2} + 25 + {x^2} - 10x\]
On rearranging, we have
\[ \Rightarrow {\left( {AD} \right)^2} = 16 - 25 - {x^2} + 10x\]
\[ \Rightarrow {\left( {AD} \right)^2} = 10x - 9 - {x^2}\] ------(2)
From equation (1) and (2), we have
\[ \Rightarrow 9 - {x^2} = 10x - 9 - {x^2}\]
Take variable \[x\] terms in to the LHS, then
\[ \Rightarrow {x^2} - {x^2} - 10x = - 9 - 9\]
On simplification, we have
\[ \Rightarrow - 10x = - 18\]
Divide both side by -10, then we get
\[ \Rightarrow x = \dfrac{{ - 18}}{{ - 10}}\]
\[ \Rightarrow x = 1.8\]
Substitute \[x\] value in equation (1), then
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - {\left( {1.8} \right)^2}\]
\[ \Rightarrow {\left( {AD} \right)^2} = 9 - 3.24\]
\[ \Rightarrow {\left( {AD} \right)^2} = 5.76\]
Take square root on both side, we have
\[ \Rightarrow AD = \pm \sqrt {5.76} \]
\[ \Rightarrow AD = \pm 2.4\]
\[\therefore AD = 2.4\]
Hence, the length of the side \[AD = 2.4\].
Therefore, Option (A) is correct.
So, the correct answer is “Option A”.
Note: To solve rectangular based problems, remember the properties of triangle i.e., the parallel sides are equal and when triangle is right angle it‘s obey the Pythagoras theorem which stated as “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[hy{p^2} = op{p^2} + ad{j^2}\], and main thing is measurement of length of any shape should be in positive.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE